Publications by authors named "Walter Uhoya"

High-pressure electrical resistance measurements have been performed on single crystal Ba(0.5)Sr(0.5)Fe(2)As(2) platelets to pressures of 16 GPa and temperatures down to 10 K using designer diamond anvils under quasi-hydrostatic conditions with an insulating steatite pressure medium.

View Article and Find Full Text PDF

Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Néel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.

View Article and Find Full Text PDF

The crystal structure of EuFe(2)As(2) has been studied up to a pressure of 35 GPa and down to a temperature of 8 K using temperature dependent x-ray diffraction in a diamond anvil cell at a synchrotron source. At 4.3 GPa, we have detected a structural phase transition from a high temperature tetragonal phase with I4/mmm space group to a low temperature orthorhombic phase with Fmmm space group around 120 K.

View Article and Find Full Text PDF

The structural properties of EuCo₂As₂ have been studied up to 35 GPa, through the use of x-ray diffraction in a diamond anvil cell at a synchrotron source. At ambient conditions, EuCo₂As₂ ) (I4/mmm) has a tetragonal lattice structure with a bulk modulus of 48 ± 4 GPa. With the application of pressure, the a axis exhibits negative compressibility with a concurrent sharp decrease in c-axis length.

View Article and Find Full Text PDF

The crystal structure and electrical resistance of structurally layered EuFe(2)As(2) have been studied up to 70 GPa and down to a temperature of 10 K, using a synchrotron x-ray source and designer diamond anvils. The room temperature compression of the tetragonal phase of EuFe(2)As(2) (I4/mmm) results in an increase in the a-axis length and a rapid decrease in the c-axis length with increasing pressure. This anomalous compression reaches a maximum at 8 GPa and the tetragonal lattice behaves normally above 10 GPa, with a nearly constant c/a axial ratio.

View Article and Find Full Text PDF

We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare-earth transition-metal arsenide oxide NdCoAsO compound that is isostructural to the high temperature superconductor parent phase NdFeAsO. The four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and antiferromagnetic Néel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K.

View Article and Find Full Text PDF

High pressure x-ray diffraction and electrical resistance measurements have been carried out on SrFe(2)As(2) to a pressure of 23 GPa and temperature of 10 K using a synchrotron source and designer diamond anvils. At ambient temperature, a phase transition from the tetragonal phase to a collapsed tetragonal (CT) phase is observed at 10 GPa under non-hydrostatic conditions. The experimental relation that T-CT transition pressure for 122 Fe-based superconductors is dependent on ambient pressure volume is affirmed.

View Article and Find Full Text PDF