Publications by authors named "Walter Stunkel"

The ability to adapt to low-nutrient microenvironments is essential for tumor cell survival and progression in solid cancers, such as colorectal carcinoma (CRC). Signaling by the NF-κB transcription factor pathway associates with advanced disease stages and shorter survival in patients with CRC. NF-κB has been shown to drive tumor-promoting inflammation, cancer cell survival, and intestinal epithelial cell (IEC) dedifferentiation in mouse models of CRC.

View Article and Find Full Text PDF
Article Synopsis
  • Maternal diabetes impacts gene expression and epigenetic mechanisms involved in neural tube development in mouse embryos, specifically altering DNA methylation in human neural progenitor cells exposed to high glucose.
  • The study found that high glucose exposure leads to downregulation of critical signaling pathways, including the SLIT1-ROBO2 pathway and the Hippo pathway, which are essential for processes like cell proliferation and neurogenesis.
  • Additionally, the research indicates that high glucose disrupts the interaction between these pathways, potentially contributing to neurodevelopmental disorders in the offspring of diabetic pregnancies.
View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) has been associated with an increased risk of maternal and neonatal morbidity. The Wharton's jelly (WJ) of the umbilical cord (UC) is a useful indicator of the deleterious effects of hyperglycemia on fetal tissues as it represents the fetus embryologically, physiologically and genetically. We studied WJ mesenchymal stem cells (hWJSCs) from UC from mothers without GDM (Normal; n = 3); insulin-controlled GDM mothers (GDMi; n = 3) and diet-controlled GDM mothers (GDMd; n = 3)].

View Article and Find Full Text PDF

Liver disease is linked to a decreased capacity of hepatocytes to divide. In addition, cellular metabolism is important for tissue homeostasis and regeneration. Since metabolic changes are a hallmark of liver disease, we investigated the connections between metabolism and cell division.

View Article and Find Full Text PDF

Context: Insulin resistance (IR) and obesity differ among ethnic groups in Singapore, with the Malays more obese yet less IR than Asian-Indians. However, the molecular basis underlying these differences is not clear.

Objective: As the skeletal muscle (SM) is metabolically relevant to IR, we investigated molecular pathways in SM that are associated with ethnic differences in IR, obesity, and related traits.

View Article and Find Full Text PDF

It is well established that the regulation of epigenetic factors, including chromatic reorganization, histone modifications, DNA methylation, and miRNA regulation, is critical for the normal development and functioning of the human brain. There are a number of maternal factors influencing epigenetic pathways such as lifestyle, including diet, alcohol consumption, and smoking, as well as age and infections (viral or bacterial). Genetic and metabolic alterations such as obesity, gestational diabetes mellitus (GDM), and thyroidism alter epigenetic mechanisms, thereby contributing to neurodevelopmental disorders (NDs) such as embryonic neural tube defects (NTDs), autism, Down's syndrome, Rett syndrome, and later onset of neuropsychological deficits.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) activation and subcutaneous white fat browning are essential components of the thermogenic response to cold stimulus in mammals. microRNAs have been shown to regulate both processes in cis. Here, we identify miR-32 as a BAT-specific super-enhancer-associated miRNA in mice that is selectively expressed in BAT and further upregulated during cold exposure.

View Article and Find Full Text PDF

Because noncommunicable diseases such as type 2 diabetes mellitus have their roots in prenatal development and conditions such as maternal gestational diabetes mellitus (GDM), we aimed to test this hypothesis in primary cells derived from the offspring of mothers with GDM compared with control subjects. We have assessed primary umbilical cord-derived cells such as human umbilical vein endothelial cells (HUVECs) and Wharton's jelly-derived mesenchymal stem cells from the offspring of mothers with and without GDM. We have compared the primary isolates in cell-based assays measuring proliferation, mitochondrial oxygen consumption, and the ability to support blood vessel growth.

View Article and Find Full Text PDF

Wharton's jelly-derived Mesenchymal Stem Cells (MSCs) isolated from newborns with intrauterine fetal growth restriction were previously shown to exert anabolic features including insulin hypersensitivity. Here, we extend these observations and demonstrate that MSCs from small for gestational age (SGA) individuals have decreased mitochondrial oxygen consumption rates. Comparing normally grown and SGA MSCs using next generation sequencing studies, we measured global transcriptomic and epigenetic profiles and identified E2F1 as an over-expressed transcription factor regulating oxidative metabolism in the SGA group.

View Article and Find Full Text PDF

The infants of mothers with gestational diabetes mellitus (GDM) have an increased risk of metabolic and cardiovascular disease. It has been difficult to study the direct effects of maternal hyperglycemia on the fetus because of inaccessibility of fetal tissues. The development of tissues that simulate the function of fetal organs using stem cell technology provides an unprecedented opportunity to study this disorder.

View Article and Find Full Text PDF

An association between impaired fetal growth and the postnatal development of obesity has been established. Here, by comparing adipocytes differentiated from mesenchymal stem cells (MSCs) taken from the umbilical cord and derived from normal and growth-restricted neonates, we identified the transcription factor SOX6 as highly expressed only in growth-restricted individuals. We found that SOX6 regulates adipogenesis in vertebrate species by activating adipogenic regulators including PPARγ, C/EBPα and MEST.

View Article and Find Full Text PDF

Individuals who are born small for gestational age (SGA) have a risk to develop various metabolic diseases during their life course. The biological memory of the prenatal state of growth restricted individuals may be reflected in epigenetic alterations in stem cell populations. Mesenchymal stem cells (MSCs) from the Wharton's jelly of umbilical cord tissue are multipotent, and we generated primary umbilical cord MSC isolates from SGA and normal neonates, which were subsequently differentiated into adipocytes.

View Article and Find Full Text PDF

Study Question: Are molecular pathways reflecting the biology of small for gestational age (SGA) neonates preserved in umbilical cord-derived mesenchymal stem cells (MSCs)?

Summary Answer: MSCs from SGA newborns were found to express an altered EGR-1-dependent gene network involved in the regulation of cell proliferation and oxidative stress.

What Is Known Already: Individuals with suboptimal intrauterine development are at greater risk of metabolic diseases such as type II diabetes, obesity and cardiovascular disease.

Study Design, Size, Duration: Umbilical cords (n = 283) from the GUSTO (growing up in Singapore towards healthy outcomes) birth cohort study, and primary MSC isolates established from SGA and matched control cases (n = 6 per group), were subjected to gene expression analysis and candidate genes were studied for functional validation.

View Article and Find Full Text PDF

CXCL14 is a chemokine that has previously been implicated in insulin resistance in mice. In humans, the role of CXCL14 in metabolic processes is not well established, and we sought to determine whether CXCL14 is a risk susceptibility gene important in fetal programming of metabolic disease. For this purpose, we investigated whether CXCL14 is differentially regulated in human umbilical cords of infants with varying birth weights.

View Article and Find Full Text PDF

The Infinium Human Methylation450 BeadChip Array (Infinium 450K) is a robust and cost-efficient survey of genome-wide DNA methylation patterns. Macaca fascicularis (Cynomolgus macaque) is an important disease model; however, its genome sequence is only recently published, and few tools exist to interrogate the molecular state of Cynomolgus macaque tissues. Although the Infinium 450K is a hybridization array designed to the human genome, the relative conservation between the macaque and human genomes makes its use in macaques feasible.

View Article and Find Full Text PDF

Integrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the complex interactions of inherited and environmental components that define the developmental origins of a range of disorders. The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in particular DNA methylation marks, have been postulated as a mechanism for the enduring effects of the prenatal environment.

View Article and Find Full Text PDF

The Infinium Human Methylation450 BeadChip Array (TM) (Infinium 450K) is an important tool for studying epigenetic patterns associated with disease. This array offers a high-throughput, low cost alternative to more comprehensive sequencing-based methodologies. Here we compare data generated by interrogation of the same seven clinical samples by Infinium 450K and reduced representation bisulfite sequencing (RRBS).

View Article and Find Full Text PDF

Background: Babies born at lower gestational ages or smaller birthweights have a greater risk of poorer health in later life. Both the causes of these sub-optimal birth outcomes and the mechanism by which the effects are transmitted over decades are the subject of extensive study. We investigated whether a transcriptomic signature of either birthweight or gestational age could be detected in umbilical cord RNA.

View Article and Find Full Text PDF

The sirtuin family of NAD-dependent histone deacetylases (HDACs) consists of seven mammalian proteins, SIRT1-7. Many of the sirtuin isoforms also deacetylate nonhistone substrates, such as p53 (SIRT1) and α-tubulin (SIRT2). The sirtuin literature focuses on pharmacological activators of SIRT1 (e.

View Article and Find Full Text PDF

A series of N-hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides were designed and synthesized as novel HDAC inhibitors. General SAR has been established for the substituents at positions 1 and 2, as well as the importance of the ethylene group and its attachment to position 5. Optimized compounds are much more potent than SAHA in both enzymatic and cellular assays.

View Article and Find Full Text PDF

The NAD(+)-dependent protein deacetylase SIRT1 is linked to cellular survival pathways by virtue of keeping the tumor suppressor gene p53 and members of the forkhead transcription factor family deacetylated. To validate SIRT1 as a therapeutic anti-cancer target, we performed immunohistochemistry experiments to study the in vivo expression of SIRT1 in cancer specimens. We show that human SIRT1 is highly expressed in cancer cell lines as well as in tissue samples from colon carcinoma patients.

View Article and Find Full Text PDF

The nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylase SIRT1 has been linked to fatty acid metabolism via suppression of peroxysome proliferator-activated receptor gamma (PPAR-gamma) and to inflammatory processes by deacetylating the transcription factor NF-kappaB. First, modulation of SIRT1 activity affects lipid accumulation in adipocytes, which has an impact on the etiology of a variety of human metabolic diseases such as obesity and insulin-resistant diabetes. Second, activation of SIRT1 suppresses inflammation via regulation of cytokine expression.

View Article and Find Full Text PDF

A single promoter has so far been found in the long control region (LCRs) of human papillomavirus-16 (HPV-16). Multiple promoters exist in the LCRs of several other papillomaviruses, which are spliced to become mRNAs for late and some early genes. Here we have investigated whether such promoters exist in the LCR of HPV-16.

View Article and Find Full Text PDF