IEEE Trans Pattern Anal Mach Intell
September 2023
The human ability to recognize when an object belongs or does not belong to a particular vision task outperforms all open set recognition algorithms. Human perception as measured by the methods and procedures of visual psychophysics from psychology provides an additional data stream for algorithms that need to manage novelty. For instance, measured reaction time from human subjects can offer insight as to whether a class sample is prone to be confused with a different class - known or novel.
View Article and Find Full Text PDFA great deal of the images found in scientific publications are retouched, reused, or composed to enhance the quality of the presentation. In most instances, these edits are benign and help the reader better understand the material in a paper. However, some edits are instances of scientific misconduct and undermine the integrity of the presented research.
View Article and Find Full Text PDFIEEE Trans Image Process
August 2021
Images from social media can reflect diverse viewpoints, heated arguments, and expressions of creativity, adding new complexity to retrieval tasks. Researchers working on Content-Based Image Retrieval (CBIR) have traditionally tuned their algorithms to match filtered results with user search intent. However, we are now bombarded with composite images of unknown origin, authenticity, and even meaning.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
October 2022
In this paper, we consider how to incorporate psychophysical measurements of human visual perception into the loss function of a deep neural network being trained for a recognition task, under the assumption that such information can reduce errors. As a case study to assess the viability of this approach, we look at the problem of handwritten document transcription. While good progress has been made towards automatically transcribing modern handwriting, significant challenges remain in transcribing historical documents.
View Article and Find Full Text PDFThe analysis of fish behavior in response to odor stimulation is a crucial component of the general study of cross-modal sensory integration in vertebrates. In zebrafish, the centrifugal pathway runs between the olfactory bulb and the neural retina, originating at the terminalis neuron in the olfactory bulb. Any changes in the ambient odor of a fish's environment warrant a change in visual sensitivity and can trigger mating-like behavior in males due to increased GnRH signaling in the terminalis neuron.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2021
What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than ideal circumstances? Can the application of such algorithms as a pre-processing step improve image interpretability for manual analysis or automatic visual recognition to classify scene content? While there have been important advances in the area of computational photography to restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of improving visual appearance and recognition, which will be an enabling factor for the deployment of visual recognition tools in many real-world scenarios. To address this, we introduce the UG dataset as a large-scale benchmark composed of video imagery captured under challenging conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition.
View Article and Find Full Text PDFIEEE Trans Image Process
March 2020
Existing enhancement methods are empirically expected to help the high-level end computer vision task: however, that is observed to not always be the case in practice. We focus on object or face detection in poor visibility enhancements caused by bad weathers (haze, rain) and low light conditions. To provide a more thorough examination and fair comparison, we introduce three benchmark sets collected in real-world hazy, rainy, and low-light conditions, respectively, with annotated objects/faces.
View Article and Find Full Text PDFIEEE Trans Image Process
October 2020
In this paper we address the problem of hallucinating high-resolution facial images from low-resolution inputs at high magnification factors. We approach this task with convolutional neural networks (CNNs) and propose a novel (deep) face hallucination model that incorporates identity priors into the learning procedure. The model consists of two main parts: i) a cascaded super-resolution network that upscales the low-resolution facial images, and ii) an ensemble of face recognition models that act as identity priors for the super-resolution network during training.
View Article and Find Full Text PDFWe propose a computational model of vision that describes the integration of cross-modal sensory information between the olfactory and visual systems in zebrafish based on the principles of the statistical extreme value theory. The integration of olfacto-retinal information is mediated by the centrifugal pathway that originates from the olfactory bulb and terminates in the neural retina. Motivation for using extreme value theory stems from physiological evidence suggesting that extremes and not the mean of the cell responses direct cellular activity in the vertebrate brain.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFImaging is a dominant strategy for data collection in neuroscience, yielding stacks of images that often scale to gigabytes of data for a single experiment. Machine learning algorithms from computer vision can serve as a pair of virtual eyes that tirelessly processes these images, automatically detecting and identifying microstructures. Unlike learning methods, our Flexible Learning-free Reconstruction of Imaged Neural volumes (FLoRIN) pipeline exploits structure-specific contextual clues and requires no training.
View Article and Find Full Text PDFPrior art has shown it is possible to estimate, through image processing and computer vision techniques, the types and parameters of transformations that have been applied to the content of individual images to obtain new images. Given a large corpus of images and a query image, an interesting further step is to retrieve the set of original images whose content is present in the query image, as well as the detailed sequences of transformations that yield the query image given the original images. This is a problem that recently has received the name of image provenance analysis.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2019
By providing substantial amounts of data and standardized evaluation protocols, datasets in computer vision have helped fuel advances across all areas of visual recognition. But even in light of breakthrough results on recent benchmarks, it is still fair to ask if our recognition algorithms are doing as well as we think they are. The vision sciences at large make use of a very different evaluation regime known as Visual Psychophysics to study visual perception.
View Article and Find Full Text PDFMachine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms.
View Article and Find Full Text PDFIt is often desirable to be able to recognize when inputs to a recognition function learned in a supervised manner correspond to classes unseen at training time. With this ability, new class labels could be assigned to these inputs by a human operator, allowing them to be incorporated into the recognition function-ideally under an efficient incremental update mechanism. While good algorithms that assume inputs from a fixed set of classes exist, e.
View Article and Find Full Text PDFResolving patterns of synaptic connectivity in neural circuits currently requires serial section electron microscopy. However, complete circuit reconstruction is prohibitively slow and may not be necessary for many purposes such as comparing neuronal structure and connectivity among multiple animals. Here, we present an alternative strategy, targeted reconstruction of specific neuronal types.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2014
For many problems in computer vision, human learners are considerably better than machines. Humans possess highly accurate internal recognition and learning mechanisms that are not yet understood, and they frequently have access to more extensive training data through a lifetime of unbiased experience with the visual world. We propose to use visual psychophysics to directly leverage the abilities of human subjects to build better machine learning systems.
View Article and Find Full Text PDFReal-world tasks in computer vision often touch upon open set recognition: multi-class recognition with incomplete knowledge of the world and many unknown inputs. Recent work on this problem has proposed a model incorporating an open space risk term to account for the space beyond the reasonable support of known classes. This paper extends the general idea of open space risk limiting classification to accommodate non-linear classifiers in a multiclass setting.
View Article and Find Full Text PDFTo date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have taken the form of "closed set" recognition, whereby all testing classes are known at training time. A more realistic scenario for vision applications is "open set" recognition, where incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during testing. This paper explores the nature of open set recognition and formalizes its definition as a constrained minimization problem.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2011
In this paper, we define meta-recognition, a performance prediction method for recognition algorithms, and examine the theoretical basis for its postrecognition score analysis form through the use of the statistical extreme value theory (EVT). The ability to predict the performance of a recognition system based on its outputs for each match instance is desirable for a number of important reasons, including automatic threshold selection for determining matches and nonmatches, and automatic algorithm selection or weighting for multi-algorithm fusion. The emerging body of literature on postrecognition score analysis has been largely constrained to biometrics, where the analysis has been shown to successfully complement or replace image quality metrics as a predictor.
View Article and Find Full Text PDF