The light : nutrient hypothesis posits that herbivore growth is increasingly constrained by low food quality as the ratio of light to nutrients increases in aquatic ecosystems. We tested predictions of this hypothesis by examining the effects of large seasonal cycles in light and nutrients on the mineral content of periphyton and the growth rate of a dominant herbivore (the snail Elimia clavaeformis) in two oligotrophic streams. Streambed irradiances in White Oak Creek and Walker Branch (eastern Tennessee, USA) varied dramatically on a seasonal basis due to leaf phenology in the surrounding deciduous forests and seasonal changes in sun angle.
View Article and Find Full Text PDFThe effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy's Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy.
View Article and Find Full Text PDFDespite the key role microalgae play in introducing toxicants into aquatic food webs, little is known about the effects of environmental factors on metal accumulation by these primary producers. Environmental factors such as light and nutrients alter growth rates and may consequently influence metal concentrations in microalgae through growth dilution. Laboratory experiments suggested that metal uptake and elimination by microalgal biofilms were gradual enough to enable dilution of metals within the biofilms by photosynthetically accrued carbon, and a simple kinetic model of metal accumulation predicted significant variation in metal content due to growth dilution over the natural range of microalgal growth rates.
View Article and Find Full Text PDFThe interaction between the grazing mayfly Ameletus validus and periphyton in a small, northern California stream was examined by manipulating the density of the mayfly in flow-through plexiglass channels. Containing natural cobble substrate and located in situ, the channels established an initial gradient of A. validus at 0, 0.
View Article and Find Full Text PDF