Publications by authors named "Walter Oberhuber"

As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues.

View Article and Find Full Text PDF

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • - The study emphasizes the importance of high-resolution annual forest growth maps, using tree-ring width (TRW) data, to better understand forest carbon sequestration and the impact of climate change and drought on forest ecosystems.
  • - By integrating high-resolution Earth observation data with climate and topography information, the researchers found that species-specific models could explain over 52% of variance in tree growth, enhancing the accuracy of growth predictions compared to using just climate and elevation data.
  • - The research successfully generated a map of annual TRW for 2021, demonstrating that combining different data sources can lead to more effective models for forest growth, while also identifying areas where predictions may be less reliable, particularly in climate marginal zones.
View Article and Find Full Text PDF

Seasonal and daily radius variations in the xylem (XRV) and inner bark (IBV) of mature Scots pine trees () were determined during April 2019-October 2021 at a drought-prone inner alpine site (. 750 m asl; Tyrol, Austria) by applying point dendrometers. XRVs were also related to environmental factors to evaluate the drivers of XRV during the growing season.

View Article and Find Full Text PDF

Green alder (), a tall multi-stemmed deciduous shrub, is widespread at high elevations in the Central European Alps. Its growth form frequently leads to asymmetric radial growth and anomalous growth ring patterns, making development of representative ring-width series a challenge. In order to assess the variability among radii of one shoot, among shoots belonging to one stock and among stocks, 60 stem discs were sampled at treeline on Mt.

View Article and Find Full Text PDF
Article Synopsis
  • There is ongoing debate about how global climate change affects the timing of spring phenomena in plants, particularly in coniferous forests, with evidence suggesting varying responses based on temperature changes.
  • Researchers collected data on xylem cell-wall-thickening onset dates from 20 coniferous species across a wide temperature gradient in the Northern Hemisphere to examine these effects.
  • A significant thermal threshold of approximately 4.9°C was identified, indicating that above this temperature, the impact of rising temperatures on xylem phenology decreases, highlighting the need to incorporate this threshold into Earth-System Models for better predictions of climate and ecosystem interactions.
View Article and Find Full Text PDF

Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L.

View Article and Find Full Text PDF

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites.

View Article and Find Full Text PDF

Maintaining sufficient water transport the xylem is crucial for tree survival under variable environmental conditions. Both efficiency and safety of the water transport are based on the anatomical structure of conduits and their connections, the pits. Yet, the plasticity of the xylem anatomy, particularly that of the pit structures, remains unclear.

View Article and Find Full Text PDF

A bimodal radial growth (RG) pattern, i.e., growth peaks in spring and autumn, was repeatedly found in trees in the Mediterranean regions, where summer drought causes reduction or cessation of cambial activity.

View Article and Find Full Text PDF

Wood formation consumes around 15% of the anthropogenic CO emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability.

View Article and Find Full Text PDF

Time series of stem diameter variations (SDVs) recorded by dendrometers are composed of two components: (i) irreversible radial stem growth and (ii) reversible stem shrinking and swelling caused by dynamics in water storage in elastic tissues outside the cambium. However, SDVs measured over dead outer bark (periderm) could also be affected by absorption and evaporation of water from remaining dead bark layers after smoothing the stem surface to properly mount dendrometers. Therefore, the focus of this study was to determine the influence of hygroscopicity of a thin dead outer bark layer on the reversible component of dendrometer records of Scots pine () under field conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how tree resilience to drought affects survival by analyzing a database of >3,500 trees from 118 sites, comparing those that survived droughts to those that died.
  • - Trees that died during droughts showed lower resilience to prior droughts, indicating that resilience is key for long-term survival.
  • - Angiosperms and gymnosperms exhibit differing strategies for dealing with drought: angiosperms struggle with initial drought impacts, while gymnosperms have difficulty recovering to pre-drought growth rates.
View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF

Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how wood formation in Northern Hemisphere conifers is affected by climate change, focusing on the phenology of wood compared to leaf phenology.
  • Researchers analyzed different ecophysiological models to predict the starting date of xylem cell enlargement in four conifer species, finding that the chilling-influenced heat-sum model was the most accurate, with a prediction error of just 7.7 days.
  • The results suggest that both chilling and warm temperatures influence the onset of wood formation, and climate change may lead to complex effects, potentially speeding up wood formation while also increasing temperature requirements due to less chilling accumulation.
View Article and Find Full Text PDF

We estimated components of the water cycle of a 150-year-old forest in an inner Alpine dry valley of the Tyrol, Austria throughout five growing seasons. Forest canopy transpiration () was measured by sap flow measurements scaled to the stand canopy level. Estimates of understory transpiration and forest floor evaporation () were derived from the soil water budget method, while interception () was modelled.

View Article and Find Full Text PDF

Climate change will further constrain water availability in dry inner-alpine environments and affect water relations and growth conditions in mountain forests, including the widespread larch forests. To estimate the effects of climate conditions on water balance and growth, variation in sap flow and stem radius of European larch was measured for 3 yr along an elevation transect from 1070 to 2250 m above sea level (asl) in an inner-alpine dry valley in South Tyrol/Italy. Additionally, long-term climate-growth relations were derived from tree cores.

View Article and Find Full Text PDF

Beside low temperatures, limited tree growth at the alpine treeline may also be attributed to a lack of available soil nutrients and competition with understory vegetation. Although intra-annual stem growth of has been studied intensively at the alpine treeline, the responses of radial growth to soil warming, soil fertilization, and below ground competition awaits clarification. In this study we quantified the effects of nitrogen (N) fertilization, soil warming, and understory removal on stem radial growth of at treeline.

View Article and Find Full Text PDF

Carbon (C) availability plays an essential role in tree growth and wood formation. We evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of C reserves in the coarse roots of to maintain growth and (ii) causes modification of wood structure notably under drought. The 6-year-old saplings were subjected to two levels of soil moisture (watered versus drought conditions) and root C status was manipulated by physically blocking phloem transport in the stem at three girdling dates (GDs).

View Article and Find Full Text PDF

In alpine regions, tree hydraulics are limited by low temperatures that restrict xylem growth and induce winter frost drought and freezing stress. While several studies have dealt with functional limitations, data on elevational changes in functionally relevant xylem anatomical parameters are still scarce. In wood cores of Pinus cembra L.

View Article and Find Full Text PDF

We tested the hypothesis that increase in carbon (C) availability in Norway spruce saplings (Picea abies (L.) Karst.) intensifies cambial cell division and increases cell lumen diameter (CLD) and cell wall thickness (CWT) when water availability is adequate.

View Article and Find Full Text PDF

The early culmination of maximum radial growth (RG) in late spring has been found in several coniferous species in a dry inner Alpine environment. We hypothesized that an early decrease in RG is an adaptation to cope with drought stress, which might require an early switch of carbon (C) allocation to belowground organs. To test this hypothesis, we experimentally subjected six-year-old Norway spruce saplings (tree height: 1.

View Article and Find Full Text PDF

High-resolution time series of stem radius variations (SRVs) record fluctuations in tree water status and temporal dynamics of radial growth. The focus of this study was to evaluate the influence of tree size (i.e.

View Article and Find Full Text PDF