Publications by authors named "Walter Massefski"

The synthesis of palladium oxidative addition complexes derived from unprotected peptides is described. Incorporation of 4-halophenylalanine into a peptide during solid phase peptide synthesis allows for subsequent oxidative addition at this position upon treatment with a palladium precursor and suitable ligand. The resulting palladium-peptide complexes are solid, storable, water-soluble, and easily purified high-performance liquid chromatography.

View Article and Find Full Text PDF

Diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy is widely used for the analysis of mixtures, dispersing the signals of different species in a two-dimensional spectrum according to their diffusion coefficients. However, interpretation of these diffusion coefficients is typically purely qualitative, for example, to deduce which species are bigger or smaller. In studies of proteins in solution, important questions concern the molecular weight of the proteins, the presence or absence of aggregation, and the degree of folding.

View Article and Find Full Text PDF

Immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide show remarkable antitumor activity in multiple myeloma (MM) via directly inhibiting MM-cell growth in the bone marrow (BM) microenvironment and promoting immune effector cell function. They are known to bind to the ubiquitin 3 ligase CRBN complex and thereby triggering degradation of IKZF1/3. In this study, we demonstrate that IMiDs also directly bind and activate zeta-chain-associated protein kinase-70 (Zap-70) via its tyrosine residue phosphorylation in T cells.

View Article and Find Full Text PDF

Bromodomains have been pursued intensively over the past several years as emerging targets for the development of anticancer and anti-inflammatory agents. It has recently been shown that some kinase inhibitors are able to potently inhibit the bromodomains of BRD4. The clinical activities of PLK inhibitor BI-2536 and JAK2-FLT3 inhibitor TG101348 have been attributed to this unexpected polypharmacology, indicating that dual-kinase/bromodomain activity may be advantageous in a therapeutic context.

View Article and Find Full Text PDF

Arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) combination safely cures fatal acute promyelocytic leukemia, but their mechanisms of action and efficacy are not fully understood. ATRA inhibits leukemia, breast, and liver cancer by targeting isomerase Pin1, a master regulator of oncogenic signaling networks. Here we show that ATO targets Pin1 and cooperates with ATRA to exert potent anticancer activity.

View Article and Find Full Text PDF

Purpose: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by inactivating mutations of the or gene, characterized by neurocognitive impairment and benign tumors of the brain, skin, heart, and kidneys. Lymphangioleiomyomatosis (LAM) is a diffuse proliferation of α-smooth muscle actin-positive cells associated with cystic destruction of the lung. LAM occurs almost exclusively in women, as a TSC manifestation or a sporadic disorder ( somatic mutations).

View Article and Find Full Text PDF

Novobiocin is an orally active antibiotic that inhibits DNA gyrase by binding the ATP-binding site in the ATPase subunit. Although effective against Gram-positive pathogens, novobiocin has limited activity against Gram-negative organisms due to the presence of the lipopolysaccharide-containing outer membrane, which acts as a permeability barrier. Using a novobiocin-sensitive Escherichia coli strain with a leaky outer membrane, we identified a mutant with increased resistance to novobiocin.

View Article and Find Full Text PDF

BCL-2-associated X protein (BAX) is a critical apoptotic regulator that can be transformed from a cytosolic monomer into a lethal mitochondrial oligomer, yet drug strategies to modulate it are underdeveloped due to longstanding difficulties in conducting screens on this aggregation-prone protein. Here, we overcame prior challenges and performed an NMR-based fragment screen of full-length human BAX. We identified a compound that sensitizes BAX activation by binding to a pocket formed by the junction of the α3-α4 and α5-α6 hairpins.

View Article and Find Full Text PDF

We present a numerical method for rapidly solving the Bloch equation for an arbitrary time-varying spin-1/2 Hamiltonian. The method relies on fast, vectorized computations such as summation and quaternion multiplication, rather than slow computations such as matrix exponentiation. A toggling frame is constructed in which the Hamiltonian is time-invariant, and therefore has a simple analytical solution.

View Article and Find Full Text PDF

p53-related protein kinase (TP53RK, also known as PRPK) is an upstream kinase that phosphorylates (serine residue Ser15) and mediates p53 activity. Here we show that TP53RK confers poor prognosis in multiple myeloma (MM) patients, and, conversely, that TP53RK knockdown inhibits p53 phosphorylation and triggers MM cell apoptosis, associated with downregulation of c-Myc and E2F-1-mediated upregulation of pro-apoptotic Bim. We further demonstrate that TP53RK downregulation also triggers growth inhibition in p53-deficient and p53-mutant MM cell lines and identify novel downstream targets of TP53RK including ribonucleotide reductase-1, telomerase reverse transcriptase, and cyclin-dependent kinase inhibitor 2C.

View Article and Find Full Text PDF

Objectives: The clinical diagnosis of qualitative platelet disorders (QPDs) based on light transmission aggregometry (LTA) requires significant blood volume, time, and expertise, all of which can be barriers to utilization in some populations and settings. Our objective was to develop a more rapid assay of platelet function by measuring platelet-mediated clot contraction in small volumes (35 µL) of whole blood using T2 magnetic resonance (T2MR).

Methods: We established normal ranges for platelet-mediated clot contraction using T2MR, used these ranges to study patients with known platelet dysfunction, and then evaluated agreement between T2MR and LTA with arachidonic acid, adenosine diphosphate, epinephrine, and thrombin receptor activator peptide.

View Article and Find Full Text PDF

Background: Existing approaches for measuring hemostasis parameters require multiple platforms, can take hours to provide results, and generally require 1-25 mL of sample. We developed a diagnostic platform that allows comprehensive assessment of hemostatic parameters on a single instrument and provides results within 15 min using 0.04 mL of blood with minimal sample handling.

View Article and Find Full Text PDF

Contraction of blood clots is necessary for hemostasis and wound healing and to restore flow past obstructive thrombi, but little is known about the structure of contracted clots or the role of erythrocytes in contraction. We found that contracted blood clots develop a remarkable structure, with a meshwork of fibrin and platelet aggregates on the exterior of the clot and a close-packed, tessellated array of compressed polyhedral erythrocytes within. The same results were obtained after initiation of clotting with various activators and also with clots from reconstituted human blood and mouse blood.

View Article and Find Full Text PDF

Cortisol and the glucocorticoid receptor (GR) signaling pathway has been linked to the development of diabetes and metabolic syndrome. In vivo, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive cortisone to its active form, cortisol. Existing clinical data have supported 11β-HSD1 as a valid therapeutic target for type 2 diabetes.

View Article and Find Full Text PDF

By using a combination of inverse gated (1)H decoupled (13)C-NMR experiments1 with short acquisition times and NMR Cryo-probe technology, the sample requirements and experimental times necessary to accurately measure enantiomeric excess of small chiral molecules has been reduced 16-fold. Quality (13)C-NMR spectra can now be obtained from a 1 to 5 mg sample in 12 minutes. The enantiomeric excess determination achieved from the average integration of all the (13)C-resonances in the spectrum is comparable to enantiomeric excess measured by chiral SFC.

View Article and Find Full Text PDF

The solvation of carbohydrates in N, N'-dialkylimidazolium ionic liquids (ILs) was investigated by means of 13C and 35/37Cl NMR relaxation and 1H pulsed field gradient stimulated echo (PFG-STE) diffusion measurements. Solutions of model sugars in 1- n-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-allyl-3-methylimidazolium chloride ([CC2mim]Cl), and 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) were studied to evaluate the effects of cation and anion structure on the solvation mechanism. In all cases, the changes in the relaxation times of carbon nuclei of the IL cations as a function of carbohydrate concentration are small and consistent with the variation in solution viscosities.

View Article and Find Full Text PDF

Stopped-flow NMR at capillary scale has many advantages over traditional methods of introducing the sample into the probe, particularly when large numbers of samples must be examined. This work describes application of a simple method for direct visualization of a sample inside the flow cell of flow NMR systems to capillary scale analysis. We describe the details of the method and show how it can be used to measure the optimum flow rate for a capillary NMR system and how to determine the optimum sampling efficiency for small samples.

View Article and Find Full Text PDF

Dimethyl sulfoxide causes alpha,beta-dihalopropanoate derivatives to undergo efficient, selective dehydrohalogenation to form alpha-haloacrylate analogues. A variety of alpha-halo Michael acceptors were prepared in dimethyl sulfoxide under mild, base-free conditions, including the preparation of alpha-bromoacrolein and alpha-chloro- and bromoacrylonitriles. Synthesis of these molecules has been reported in the literature to be difficult.

View Article and Find Full Text PDF

This work describes two distinct routes to prepare pyrazolo[1,5-alpha]pyrimidin-7-ones and two distinct routes to prepare pyrazolo[1,5-alpha]pyrimidin-5-ones. Use of 1,3-dimethyluracil as the electrophile in the preparation of the pyrimidin-5-one regioisomer represents a correction of previously reported results. Also, a novel reaction to prepare this isomer was identified and the reaction mechanism elucidated.

View Article and Find Full Text PDF

The degradation product of ezlopitant was isolated from low specific activity material and identified by solution phase hydrogen/deuterium (H/D) exchange and electrospray ionization tandem mass spectrometry (ESI/MS/MS) to be an isopropyl peroxide analog of ezlopitant. The structure of the degradant was further confirmed by nuclear magnetic resonance (NMR) spectroscopy utilizing complete 1H and 13C assignments. Studies were also performed to identify the factors responsible for the oxidative degradation of ezlopitant, which included salt form, storage conditions and salt formation solvent.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionb5e2jnhih9neltu7el616fdvo86psr2s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once