Phase separation explains the exquisite spatial and temporal regulation of many biological processes, but the role of transcription factor-mediated condensates in gene regulation is contentious, requiring head-to-head comparison of competing models. Here, we focused on the prototypical yeast transcription factor Gcn4 and assessed two models for gene transcription activation, i.e.
View Article and Find Full Text PDFMicroporous networks of Pt nanoparticles (NP) interlinked by aromatic diamines have recently shown prospects of application as hydrogen combustion catalysts in H gas microsensors. In particular with respect to long-term sensor performance, they outperformed plain Pt NP as catalysts. In this paper, electron microscopy and Fourier transform infrared (FTIR) spectroscopy data on the stability of -phenylene diamine (PDA) and of the PDA-linked Pt NP network structure during catalyst activation and long-term sensor operation at elevated temperature (up to 120-180 °C) will be presented.
View Article and Find Full Text PDFSynTEF1, a prototype synthetic genome reader/regulator (SynGR), was designed to target GAA triplet repeats and restore the expression of frataxin () in Friedreich's ataxia patients. It achieves this complex task by recruiting BRD4, via a pan-BET ligand (JQ1), to the GAA repeats by using a sequence-selective DNA-binding polyamide. When bound to specific genomic loci in this way, JQ1 functions as a chemical prosthetic for acetyl-lysine residues that are natural targets of the two tandem bromodomains (BD1 and BD2) in bromo- and extra-terminal domain (BET) proteins.
View Article and Find Full Text PDFHigh-aspect-ratio carbon nanotubes can be directly mixed into polymers to create piezoresistive polymers. Reducing the cross-sensitivity and creating unidirectional sensitive sensors can be achieved by aligning the nanotubes before they are cured in the polymer layer. This research presents and characterises this alignment of carbon nanotubes inside polydimethylsiloxane and gives the corresponding strain sensor results.
View Article and Find Full Text PDFFiber reinforced plastics (FRP) offer huge potentials for energy efficient applications. Special care must be taken during both FRP fabrication and usage to ensure intended material properties and behavior. This paper presents a novel approach for the monitoring of the strain and temperature of glass fibre reinforced polymer (GFRP) materials in the context of both production process monitoring and structural health monitoring (SHM) applications.
View Article and Find Full Text PDFSensors (Basel)
July 2023
The aim of this work was to measure the lifetime of neural implant test samples at two different temperatures, using a method that allows the precise measurement of the sample lifetime, further analysis with the use of Weibull statistics, and examination of the applicability of the Van't Hoff rule. The correct estimation of the lifetime of neural implants is important to avoid preliminary failures, when used in humans. The novelty lies in the precise data due to the measurement approach, the application of the Weibull statistics to neural test samples, and the examination of the Van't Hoff rule's applicability to the longevity of polyimide-based neural implant samples.
View Article and Find Full Text PDFSamples that were meant to simulate the behavior of neural implants were put into Ringer's solution, and the occurring damage was assessed. The samples consist of an interdigitated gold-structure and two contact pads embedded between two Polyimide layers, resulting in free-floating structures. The two parts of the interdigitated structure have no electric contacts and are submerged in the solution during the experiment.
View Article and Find Full Text PDFSensors (Basel)
October 2022
Analog sensors often require complex mathematical models for data analysis. Digital twins (DTs) provide platforms to display sensor data in real time but still lack generic solutions regarding how mathematical models and algorithms can be integrated. Based on previous tests for monitoring and predicting banana fruit quality along the cool chain, we demonstrate how a system of multiple models can be converted into a DT.
View Article and Find Full Text PDFThe lack of long-term stability of polymeric neural interfaces remains one of the most important and less tackled issues in this research field. To address this issue, we fabricated two test structures based on interdigitated electrodes (IDEs) encapsulated with polyimide (PI). One of the test samples was pretreated with barrel oxygen plasma prior to spin coating of the second PI layer.
View Article and Find Full Text PDFStructural health monitoring of lightweight constructions made of composite materials can be performed using guided ultrasonic waves. If modern fiber metal laminates are used, this requires integrated sensors that can record the inner displacement oscillations caused by the propagating guided ultrasonic waves. Therefore, we developed a robust MEMS vibrometer that can be integrated while maintaining the structural and functional compliance of the laminate.
View Article and Find Full Text PDFThe objective of this article is to present the results of our investigations concerning the environmental conditions that can be expected during the embedding process into fibre metal laminates and the consequences for a sensor node for structural health monitoring. The idea behind this investigation is to determine for which manufacturing conditions the integration of sensor nodes into the material can be done and to identify limits for this. The sensor nodes consist of commercially available integrated circuits and passive components soldered onto an adhesive-less flexible printed circuit board.
View Article and Find Full Text PDFFor chronic applications of flexible neural implants, e.g., intracortical probes, the flexible substrate material has to encapsulate the electrical conductors with a long-term stability against the saline environment of the neural tissue.
View Article and Find Full Text PDFFlexible pressure sensors with piezoresistive polymer composites can be integrated into elastomers to measure pressure changes in sealings, preemptively indicating a replacement is needed before any damage or leakage occurs. Integrating small percentages of high aspect ratio multi-walled carbon nanotubes (MWCNTs) into polymers does not significantly change its mechanical properties but highly affects its electrical properties. This research shows a pressure sensor based on homogeneous dispersed MWCNTs in polydimethylsiloxane with a high sensitivity region (0.
View Article and Find Full Text PDFPorous networks of Pt nanoparticles interlinked by bifunctional organic ligands have shown high potential as catalysts in micro-machined hydrogen gas sensors. By varying the ligand among p-phenylenediamine, benzidine, 4,4''-diamino-p-terphenyl, 1,5-diaminonaphthalene, and trans-1,4-diaminocyclohexane, new variants of such networks were synthesized. Inter-particle distances within the networks, determined via transmission electron microscopy tomography, varied from 0.
View Article and Find Full Text PDFPolyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films.
View Article and Find Full Text PDFThe loads acting on a workpiece during machining processes determine the modification of the surface of the final workpiece and, thus, its functional properties. In this work, a method that uses thermocouples to measure the temperature in precision fly-cutting machining with high spatial and temporal resolution is presented. Experiments were conducted for various materials and machining parameters.
View Article and Find Full Text PDFThere is currently a large demand for aluminum components to measure the mechanical and thermal loads to which they are subjected. With structural health monitoring, components in planes, vehicles, or bridges can monitor critical loads and potentially prevent an impending fatigue failure. Externally attached sensors need a structural model to obtain knowledge of the mechanical load at the point of interest, whereas embedded sensors can be used for direct measurement at the point of interest.
View Article and Find Full Text PDFThis paper presents a highly sensitive thermoelectric sensor for catalytic combustible gas detection. The sensor contains two low-stress (+176 MPa) membranes of a combination of stoichiometric and silicon-rich silicon nitride that makes them chemically and thermally stable. The complete fabrication process with details, especially the challenges and their solutions, is discussed elaborately.
View Article and Find Full Text PDFRecordings of epidural field potentials (EFPs) allow neuronal activity to be acquired over a large region of cortical tissue with minimal invasiveness. Because electrodes are placed on top of the dura and do not enter the neuronal tissue, EFPs offer intriguing options for both clinical and basic science research. On the other hand, EFPs represent the integrated activity of larger neuronal populations and possess a higher trial-by-trial variability and a reduced signal-to-noise ratio due the additional barrier of the dura.
View Article and Find Full Text PDFThe natural product colletoic acid (CA) is a selective inhibitor of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which primarily converts cortisone to the active glucocorticoid (GC) cortisol. Here, CA's mode of action and its potential as a chemical tool to study intracellular GC signaling in adipogenesis are disclosed. 11β-HSD1 biochemical studies of CA indicated that its functional groups at C-1, C-4, and C-9 were important for enzymatic activity; an X-ray crystal structure of 11β-HSD1 bound to CA at 2.
View Article and Find Full Text PDFThe increasing prevalence of drug resistant and/or high-risk cancers indicate further drug discovery research is required to improve patient outcome. This study outlines a simplified approach to identify lead compounds from natural products against several cancer cell lines, and provides the basis to better understand structure activity relationship of the natural product cephalotaxine. Using high-throughput screening, a natural product library containing fractions and pure compounds was interrogated for proliferation inhibition in acute lymphoblastic leukemia cellular models (SUP-B15 and KOPN-8).
View Article and Find Full Text PDFNatural products continue to provide a platform to study biological systems. A bioguided study of cancer cell models led us to a new member of the jatrophane natural products from Jatropha gossypiifolia, which was independently identified and characterized as jatrogossone A (1). Purification and structure elucidation was performed by column chromatography and high-performance liquid chromatography-mass spectrometry and NMR techniques, and the structure was confirmed via X-ray crystallography.
View Article and Find Full Text PDFErgosterol peroxide selectively exhibits biological activity against a wide range of diseases; however, its mode of action remains unknown. Here, we present an efficient synthesis of ergosterol peroxide chemical probes for in vitro anticancer evaluation, live cell studies and proteomic profiling. Ergosterol peroxide analogues show promising anti-proliferation activity against triple negative breast cancer cellular models, revealing information on the structure-activity relationship of this natural product in order to develop superior analogues.
View Article and Find Full Text PDFMoisture diffusion in carbon fiber composites changes the mechanical properties of the composite. Therefore, a monitoring method of the actual content of moisture in the composite is important. However, at the moment there are no online methods established.
View Article and Find Full Text PDF