When unperturbed, granular materials form stable structures that resemble the ones of other amorphous solids like metallic or colloidal glasses. Whether or not granular materials under shear have an elastic response is not known, and also the influence of particle surface roughness on the yielding transition has so far remained elusive. Here we use X-ray tomography to determine the three-dimensional microscopic dynamics of two granular systems that have different roughness and that are driven by cyclic shear.
View Article and Find Full Text PDFUsing large-scale molecular dynamics simulations, we investigate the surface properties of lithium, sodium, and potassium silicate glasses containing 25 mol % of alkali oxide. The comparison of two types of surfaces, a melt-formed surface (MS) and a fracture surface (FS), demonstrates that the influence of the alkali modifier on the surface properties depends strongly on the nature of the surface. The FS exhibits a monotonic increase of modifier concentration with increasing alkali size while the MS shows a saturation of alkali concentration when going from Na to K glasses, indicating the presence of competing mechanisms that influence the properties of a MS.
View Article and Find Full Text PDFThe plastic deformation of crystalline materials can be understood by considering their structural defects such as disclinations and dislocations. Although also glasses are solids, their structure resembles closely the one of a liquid and hence the concept of structural defects becomes ill-defined. As a consequence it is very challenging to rationalize on a microscopic level the mechanical properties of glasses close to the yielding point and to relate plastic events to structural properties.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
The conventional wisdom is that liquids are completely disordered and lack nontrivial structure beyond nearest-neighbor distances. Recent observations have upended this view and demonstrated that the microstructure in liquids is surprisingly rich and plays a critical role in numerous physical, biological, and industrial processes. However, approaches to uncover this structure are either system-specific or yield results that are not physically intuitive.
View Article and Find Full Text PDFThe elasticity of disordered and polydisperse polymer networks is a fundamental problem of soft matter physics that is still open. Here, we self-assemble polymer networks via simulations of a mixture of bivalent and tri- or tetravalent patchy particles, which result in an exponential strand length distribution analogous to that of experimental randomly cross-linked systems. After assembly, the network connectivity and topology are frozen and the resulting system is characterized.
View Article and Find Full Text PDFA recent breakthrough in glass science has been the synthesis of ultrastable glasses via physical vapor deposition techniques. These samples display enhanced thermodynamic, kinetic and mechanical stability, with important implications for fundamental science and technological applications. However, the vapor deposition technique is limited to atomic, polymer and organic glass-formers and is only able to produce thin film samples.
View Article and Find Full Text PDFUsing particle trajectory data obtained from x-ray tomography, we determine two kinds of effective temperatures in a cyclically sheared granular system. The first one is obtained from the fluctuation-dissipation theorem which relates the diffusion and mobility of lighter tracer particles immersed in the system. The second is the Edwards compactivity defined via the packing volume fluctuations.
View Article and Find Full Text PDFQuasi-two-dimensional (quasi-2D) colloidal hard-sphere suspensions confined in a slit geometry are widely used as two-dimensional (2D) model systems in experiments that probe the glassy relaxation dynamics of 2D systems. However, the question to what extent these quasi-2D systems indeed represent 2D systems is rarely brought up. Here, we use computer simulations that take into account hydrodynamic interactions to show that dense quasi-2D colloidal bi-disperse hard-sphere suspensions exhibit much more rapid diffusion and relaxation than their 2D counterparts at the same area fraction.
View Article and Find Full Text PDFUsing computed x-ray tomography we determine the three dimensional (3D) structure of binary hard sphere mixtures as a function of composition and size ratio of the particles q. Using a recently introduced four-point correlation function we reveal that this 3D structure has on intermediate and large length scales a surprisingly regular order, the symmetry of which depends on q. The related structural correlation length has a minimum at the composition at which the packing fraction is highest.
View Article and Find Full Text PDFLinks between dynamical Frenkel defects and collective diffusion of fluorides in -PbF are explored using Born-Oppenheimer molecular dynamics. The calculated self-diffusion coefficient and ionic conductivity are 3.2 × 10 cm s and 2.
View Article and Find Full Text PDFUsing x-ray tomography, we experimentally investigate granular packings subject to mechanical tapping for three types of beads with different friction coefficients. We validate the Edwards volume ensemble in these three-dimensional granular systems and establish a granular version of thermodynamic zeroth law. Within the Edwards framework, we also explicitly clarify how friction influences granular statistical mechanics by modifying the density of states, which allows us to determine the entropy as a function of packing fraction and friction.
View Article and Find Full Text PDFDue to their unique structural and mechanical properties, randomly cross-linked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (e.g.
View Article and Find Full Text PDFWe propose a novel model for a glass-forming liquid, which allows us to switch in a continuous manner from a standard three-dimensional liquid to a fully connected mean-field model. This is achieved by introducing k additional particle-particle interactions, which thus augments the effective number of neighbors of each particle. Our computer simulations of this system show that the structure of the liquid does not change with the introduction of these pseudo-neighbors and by means of analytical calculations, and we determine the structural properties related to these additional neighbors.
View Article and Find Full Text PDFPhys Rev Lett
February 2021
Using atomistic computer simulations we determine the roughness and topographical features of melt-formed (MS) and fracture surfaces (FS) of oxide glasses. We find that the topography of the MS is described well by the frozen capillary wave theory. The FS are significant rougher than the MS and depend strongly on glass composition.
View Article and Find Full Text PDFUsing cyclic shear to drive a two-dimensional granular system, we determine the structural characteristics for different interparticle friction coefficients. These characteristics are the result of a competition between mechanical stability and entropy, with the latter's effect increasing with friction. We show that a parameter-free maximum-entropy argument alone predicts an exponential cell order distribution, with excellent agreement with the experimental observation.
View Article and Find Full Text PDFAs a glass-forming liquid is cooled, the dynamics of its constituent particles changes from being liquid-like to more solid-like. The solidity of the resulting glassy material is believed to be due to a cage-formation process, whereby the motion of individual particles is increasingly constrained by neighbouring particles. This process begins at the temperature (or particle density) at which the glass-forming liquid first shows signs of glassy dynamics; however, the details of how the cages form remain unclear.
View Article and Find Full Text PDFUsing molecular dynamics simulations, we investigate how the structural and vibrational properties of the surfaces of sodo-silicate glasses depend on the sodium content as well as the nature of the surface. Two types of glass surfaces are considered: A melt-formed surface (MS) in which a liquid with a free surface has been cooled down into the glass phase and a fracture surface (FS) obtained by tensile loading of a glass sample. We find that the MS is more abundant in Na and non-bridging oxygen atoms than the FS and the bulk glass, whereas the FS has higher concentration of structural defects such as two-membered rings and under-coordinated Si than the MS.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
Disordered systems like liquids, gels, glasses, or granular materials are not only ubiquitous in daily life and in industrial applications, but they are also crucial for the mechanical stability of cells or the transport of chemical and biological agents in living organisms. Despite the importance of these systems, their microscopic structure is understood only on a rudimentary level, thus in stark contrast to the case of gases and crystals. Since scattering experiments and analytical calculations usually give only structural information that is spherically averaged, the three-dimensional (3D) structure of disordered systems is basically unknown.
View Article and Find Full Text PDFWe adapt and apply a recently developed optimization scheme used to obtain effective potentials for aluminosilicate glasses to include the network former boron into the interaction parameter set. As input data for the optimization, we used the radial distribution functions of the liquid at high temperature generated by ab initio molecular dynamics simulations, and density, coordination, and elastic modulus of glass at room temperature from experiments. The new interaction potentials are shown to reliably reproduce the structure, coordination, and mechanical properties over a wide range of compositions for binary alkali borates.
View Article and Find Full Text PDFWe apply a recently developed optimization scheme to obtain effective potentials for alkali and alkaline-earth aluminosilicate glasses that contain lithium, sodium, potassium, or calcium as modifiers. As input data for the optimization, we used the radial distribution functions of the liquid at high temperature generated by means of ab initio molecular dynamics simulations and density and elastic modulus of glass at room temperature from experiments. The new interaction potentials are able to reproduce reliably the structure and various mechanical and vibrational properties over a wide range of compositions for binary silicates.
View Article and Find Full Text PDFThe dynamics of glass-forming systems shows a multitude of features that are absent in normal liquids, such as non-exponential relaxation and a strong temperature-dependence of the relaxation time. Connecting these dynamic properties to the microscopic structure of the system is challenging because of the presence of the structural disorder. Here we use computer simulations of a metallic glass-former to establish such a connection.
View Article and Find Full Text PDFWe use computer simulations to probe the thermodynamic and dynamic properties of a glass former that undergoes an ideal glass transition because of the presence of randomly pinned particles. We find that even deep in the equilibrium glass state, the system relaxes to some extent because of the presence of localized excitations that allow the system to access different inherent structures, thus giving rise to a nontrivial contribution to the entropy. By calculating with high accuracy the vibrational part of the entropy, we show that also in the equilibrium glass state thermodynamics and dynamics give a coherent picture, and that glasses should not be seen as a disordered solid in which the particles undergo just vibrational motion but instead as a system with a highly nonlinear internal dynamics.
View Article and Find Full Text PDFWe propose a new scheme to parameterize effective potentials that can be used to simulate atomic systems such as oxide glasses. As input data for the optimization, we use the radial distribution functions of the liquid and the vibrational density of state of the glass, both obtained from simulations, as well as experimental data on the pressure dependence of the density of the glass. For the case of silica, we find that this new scheme facilitates finding pair potentials that are significantly more accurate than the previous ones even if the functional form is the same, thus demonstrating that even simple two-body potentials can be superior to more complex three-body potentials.
View Article and Find Full Text PDFUpon mechanical loading, granular materials yield and undergo plastic deformation. The nature of plastic deformation is essential for the development of the macroscopic constitutive models and the understanding of shear band formation. However, we still do not fully understand the microscopic nature of plastic deformation in disordered granular materials.
View Article and Find Full Text PDFWe use x-ray tomography to investigate the translational and rotational dynamical heterogeneities of a three dimensional hard ellipsoid granular packing driven by oscillatory shear. We find that particles which translate quickly form clusters with a size distribution given by a power law with an exponent that is independent of the strain amplitude. Identical behavior is found for particles that are translating slowly, rotating quickly, or rotating slowly.
View Article and Find Full Text PDF