The human gut microbiome is a complex microbial community that is strongly linked to both host health and disease. However, the detailed molecular mechanisms underlying the effects of these microorganisms on host biology remain largely uncharacterized. The development of non-lethal, small-molecule inhibitors that target specific gut microbial activities enables a powerful but underutilized approach to studying the gut microbiome and a promising therapeutic strategy.
View Article and Find Full Text PDFThe gut-microbe-derived metabolite trimethylamine N-oxide (TMAO) is increased by insulin resistance and associated with several sequelae of metabolic syndrome in humans, including cardiovascular, renal, and neurodegenerative disease. The mechanism by which TMAO promotes disease is unclear. We now reveal the endoplasmic reticulum stress kinase PERK (EIF2AK3) as a receptor for TMAO: TMAO binds to PERK at physiologically relevant concentrations; selectively activates the PERK branch of the unfolded protein response; and induces the transcription factor FoxO1, a key driver of metabolic disease, in a PERK-dependent manner.
View Article and Find Full Text PDFFEMS Microbiol Lett
October 2015
Spore-forming solventogenic Clostridium spp. are receiving renewed attention due to their butanol production abilities. However, there is an absence of literature describing the preparation of dense, vigorous and homogeneous seed cultures of Clostridium spp.
View Article and Find Full Text PDFProduction of butanol by solventogenic clostridia is controlled through metabolic regulation of the carbon flow and limited by its toxic effects. To overcome cell sensitivity to solvents, stress-directed evolution methodology was used three decades ago on Clostridium beijerinckii NCIMB 8052 that spawned the SA-1 strain. Here, we evaluated SA-1 solventogenic capabilities when growing on a previously validated medium containing, as carbon- and energy-limiting substrates, sucrose and the products of its hydrolysis d-glucose and d-fructose and only d-fructose.
View Article and Find Full Text PDF