Publications by authors named "Walter Horst"

Aluminium (Al) toxicity is one of the major constraints for crop growth and productivity in most of the acid soils worldwide. The primary lesion of Al toxicity is the rapid inhibition of root elongation. The root apex, especially the transition zone (TZ), has been identified as the major site of Al accumulation and injury.

View Article and Find Full Text PDF

The mechanisms of aluminum (Al) resistance in wheat and rye involve the release of citrate and malate anions from the root apices. Many of the genes controlling these processes have been identified and their responses to Al treatment described in detail. This study investigated how the major Al resistance traits of wheat and rye are transferred to triticale (x Wittmack) which is a hybrid between wheat and rye.

View Article and Find Full Text PDF

A major factor determining aluminium (Al) sensitivity in higher plants is the binding of Al to root cell walls. The Al binding capacity of cell walls is closely linked to the extent of pectin methylesterification, as the presence of methyl groups attached to the pectin backbone reduces the net negative charge of this polymer and hence limits Al binding. Despite recent progress in understanding the molecular basis of Al resistance in a wide range of plants, it is not well understood how the methylation status of pectin is mediated in response to Al stress.

View Article and Find Full Text PDF

Artemisia fragrans is a plant species with ability of growing on heavy metal-polluted soils. Ecotypes of this species naturally growing in polluted areas can accumulate and tolerate different amounts of heavy metals (HM), depending on soil contamination level at their origin. Heavy metal tolerance of various ecotypes collected from contaminated (AP, SP) and non-contaminated (BG) sites was compared by cultivation on a highly HM-contaminated river sediment and a non-contaminated agricultural control soil.

View Article and Find Full Text PDF

Background Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature, and for their yield and nutritional quality in agriculture. Root systems are complex and a variety of root phenes have been identified as contributors to adaptation to soils with low fertility and aluminium (Al) toxicity. Phenotypic characterization of root adaptations to infertile soils is enabling plant breeders to develop improved cultivars that not only yield more, but also contribute to yield stability and nutritional security in the face of climate variability.

View Article and Find Full Text PDF

Background And Aims: Aluminium (Al) toxicity and drought are two major limiting factors for common bean (Phaseolus vulgaris) production on tropical acid soils. Polyethylene glycol (PEG 6000)-induced osmotic stress (OS) simulating drought stress reduces Al accumulation in the entire root tips of common bean by alteration of cell-wall (CW) porosity, which might be regulated by two genes encoding xyloglucan endotransglucosylase/hydrolase, PvXTH9 and PvXTHb The aim of this research was to understand the spatial and temporal regulation of both XTH genes in PEG-mediated Al accumulation in the root tips.

Methods: In this study the spatial and temporal expression patterns of Al-inhibited root elongation, Al accumulation, XTH gene expression and xyloglucan endotransglucosylase (XET) enzyme action in the root tips were analysed under PEG-induced OS by a combination of physiological and molecular approaches such as quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ fluorescence detection of XET in root tips.

View Article and Find Full Text PDF

Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green).

View Article and Find Full Text PDF

High nitrogen (N) efficiency, characterized by high grain yield under N limitation, is an important agricultural trait in Brassica napus L. cultivars related to delayed senescence of older leaves during reproductive growth (a syndrome called stay-green). The aim of this study was thus to identify genes whose expression is specifically altered during N starvation-induced leaf senescence and that can be used as markers to distinguish cultivars at early stages of senescence prior to chlorophyll loss.

View Article and Find Full Text PDF

The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth.

View Article and Find Full Text PDF

Verticillium dahliae is a prominent generator of plant vascular wilting disease and sulfur (S)-enhanced defense (SED) mechanisms contribute to its in-planta elimination. The accumulation of S-containing defense compounds (SDCs) including elemental S (S(0) ) has been described based on the comparison of two near-isogenic tomato (Solanum lycopersicum) lines differing in fungal susceptibility. To better understand the effect of S nutrition on V.

View Article and Find Full Text PDF
Article Synopsis
  • Wines with higher biogenic amines can negatively impact health, and nitrogen fertilization in vineyards affects their levels.
  • A study found that applying nitrogen increased total amine concentrations in musts and wines, particularly ethylamine and histamine, while some other amine levels decreased during fermentation.
  • Despite the increase, tyramine and histamine levels remained safe for non-allergenic individuals across both years of the study.
View Article and Find Full Text PDF
Article Synopsis
  • Prior research demonstrates that polyethylene glycol (PEG)-induced osmotic stress (OS) decreases cell-wall porosity, limiting aluminum uptake in common bean roots.
  • A proteomic and phosphoproteomic study identified 22 proteins regulated by OS, with a majority linked to carbohydrate and amino acid metabolism.
  • Dehydrin was found to enhance its phosphorylation in response to OS, suggesting it helps protect the cell wall's structure during recovery from osmotic stress, revealing complex mechanisms behind OS's role in reducing aluminum accumulation.
View Article and Find Full Text PDF

Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al-drought interaction in the root apex. Root elongation was inhibited by both Al and drought.

View Article and Find Full Text PDF

Genotypic- and silicon (Si)-mediated differences in manganese (Mn) tolerance of cowpea (Vigna unguiculata) arise from a combination of symplastic and apoplastic traits. A detailed metabolomic inspection could help to identify functional associations between genotype- and Si-mediated Mn tolerance and metabolism. Two cowpea genotypes differing in Mn tolerance (TVu 91, Mn sensitive; TVu 1987, Mn tolerant) were subjected to differential Mn and Si treatments.

View Article and Find Full Text PDF

Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots.

View Article and Find Full Text PDF

• Aluminium (Al) toxicity and drought are two major stress factors limiting common bean (Phaseolus vulgaris) production on tropical acid soils. Polyethylene glycol (PEG) treatment reduces Al uptake and Al toxicity. • The effect of PEG 6000-induced osmotic stress on the expression of genes was studied using SuperSAGE combined with next-generation sequencing and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for selected genes.

View Article and Find Full Text PDF

Black leaf mold (BLM), caused by Pseudocercospora fuligena, is a major plant growth- and yield-limiting factor for tomato production in the humid tropics. A library of 90 introgession lines (ILs), the BLM-resistant donor Solanum habrochaites, and the BLM-susceptible recurrent S. lycopersicum parent (RP) were visually phenotyped under natural infection conditions in a nethouse in central Thailand.

View Article and Find Full Text PDF

Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1.

View Article and Find Full Text PDF

A better understanding of aluminum (Al) uptake and transport is expected to contribute to unravel the apparent contradiction between Al exclusion and Al accumulation in buckwheat. *We studied the effect of Al supply on the root-tip Al and oxalate concentrations of the apoplastic water free space fluid (WFSF) and the symplast as affected by temperature, oxalate supply and the anion-channel blocker phenylglyoxal (PG). *Aluminum supply rapidly activated the release of oxalate to the WFSF to establish a 1 : 1 Al to oxalate ratio.

View Article and Find Full Text PDF

Background And Aims: Aluminium (Al) resistance in common bean is known to be due to exudation of citrate from the root after a lag phase, indicating the induction of gene transcription and protein synthesis. The aims of this study were to identify Al-induced differentially expressed genes and to analyse the expression of candidate genes conferring Al resistance in bean.

Methods: The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes in an Al-resistant bean genotype ('Quimbaya') during the induction period.

View Article and Find Full Text PDF

Background And Aims: Research on manganese (Mn) toxicity and tolerance indicates that Mn toxicity develops apoplastically through increased peroxidase activities mediated by phenolics and Mn, and Mn tolerance could be conferred by sequestration of Mn in inert cell compartments. This comparative study focuses on Mn-sensitive barley (Hordeum vulgare) and Mn-tolerant rice (Oryza sativa) as model organisms to unravel the mechanisms of Mn toxicity and/or tolerance in monocots.

Methods: Bulk leaf Mn concentrations as well as peroxidase activities and protein concentrations were analysed in apoplastic washing fluid (AWF) in both species.

View Article and Find Full Text PDF

Background: Aluminium (Al) toxicity is the most important soil constraint for plant growth and development in acid soils. The mechanism of Al-induced inhibition of root elongation is still not well understood, and it is a matter of debate whether the primary lesions of Al toxicity are apoplastic or symplastic.

Scope: The present review focuses on the role of the apoplast in Al toxicity and resistance, summarizing evidence from our own experimental work and other evidence published since 1995.

View Article and Find Full Text PDF

The detoxification of aluminum (Al) in root tips of the Al accumulator buckwheat by exudation of oxalate leading to reduced Al uptake (Al resistance) is difficult to reconcile with the Al accumulation (Al tolerance). The objective of this study was to analyze resistance and tolerance mechanisms at the same time evaluating particularly possible stratification of Al uptake, Al transport and oxalate exudation along the root apex. The use of a minirhizotron made it possible to differentiate between spatial responses to Al along the root apex with regard to Al uptake and organic acid anion exudation, but also to measure at the same time Al and organic acid transport in the xylem.

View Article and Find Full Text PDF

Two common bean (Phaseolus vulgaris L.) genotypes differing in aluminum (Al) resistance, Quimbaya (Al-resistant) and VAX-1 (Al-sensitive) were grown in hydroponics for up to 25 h with or without Al, and several parameters related to the exudation of organic acids anions from the root apex were investigated. Al treatment enhanced the exudation of citrate from the root tips of both genotypes.

View Article and Find Full Text PDF

Previous work suggested that the apoplastic phenol composition and its interaction with apoplastic class III peroxidases (PODs) are decisive in the development or avoidance of manganese (Mn) toxicity in cowpea (Vigna unguiculata L.). This study characterizes apoplastic PODs with particular emphasis on the activities of specific isoenzymes and their modulation by phenols in the Mn-sensitive cowpea cultivar TVu 91 as affected by Mn and silicon (Si) supply.

View Article and Find Full Text PDF