Premature intrapancreatic trypsinogen activation is widely regarded as an initiating event for acute pancreatitis. Previous studies have alternatively implicated secretory vesicles, endosomes, lysosomes, or autophagosomes/autophagolysosomes as the primary site of trypsinogen activation, from which a cell-damaging proteolytic cascade originates. To identify the subcellular compartment of initial trypsinogen activation we performed a time-resolution analysis of the first 12 h of caerulein-induced pancreatitis in transgenic light chain 3 (LC3)-GFP autophagy reporter mice.
View Article and Find Full Text PDFBackground And Aims: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression.
Methods: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5;Kras), and compared them with mice with only oncogenic Kras (controls).
Background: Chemoresistance is a main obstacle to effective esophageal cancer (EC) therapy. We hypothesize that altered expression of microRNAs (miRNAs) play a role in EC cancer progression and resistance to 5-fluorouracil (5-FU) based chemotherapeutic strategies.
Methods: Four pairs of esophageal adenocarcinoma (EAC) cell lines and corresponding 5-FU resistant variants were established.
Am J Physiol Gastrointest Liver Physiol
September 2016
Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury.
View Article and Find Full Text PDFBackground & Aims: Under conditions of inflammation in the absence of micro-organisms (sterile inflammation), necrotic cells release damage-associated molecular patterns that bind to Toll-like receptors on immune cells to activate a signaling pathway that involves activation of IκB kinase and nuclear factor κB (NF-κB). Little is known about the mechanisms that control NF-κB activity during sterile inflammation. We analyzed the contribution of B-cell CLL/lymphoma 3 (BCL3), a transcription factor that associates with NF-κB, in control of sterile inflammation in the pancreas and biliary system of mice.
View Article and Find Full Text PDFBackground & Aims: Little is known about the pathogenic mechanisms of chronic pancreatitis. We investigated the roles of complement component 5 (C5) in pancreatic fibrogenesis in mice and patients.
Methods: Chronic pancreatitis was induced by ligation of the midpancreatic duct, followed by a single supramaximal intraperitoneal injection of cerulein, in C57Bl6 (control) and C5-deficient mice.
Background & Aims: Little is known about the mechanisms of the progressive tissue destruction, inflammation, and fibrosis that occur during development of chronic pancreatitis. Autophagy is involved in multiple degenerative and inflammatory diseases, including pancreatitis, and requires the protein autophagy related 5 (ATG5). We created mice with defects in autophagy to determine its role in pancreatitis.
View Article and Find Full Text PDFTransient hepatic ischemia can cause significant liver injury. A central and early event in ischemia/reperfusion (I/R) injury is the impairment of mitochondria. The phospholipid cardiolipin (CL) is required for efficient mitochondrial function.
View Article and Find Full Text PDFChymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis.
View Article and Find Full Text PDFAcute lung injury (ALI) is an inflammatory disease with a high mortality rate. Although typically seen in individuals with sepsis, ALI is also a major complication in severe acute pancreatitis (SAP). The pathophysiology of SAP-associated ALI is poorly understood, but elevated serum levels of IL-6 is a reliable marker for disease severity.
View Article and Find Full Text PDFObjective: To determine the value of pancreatic stone protein in predicting sepsis-related postoperative complications and death in the ICU.
Design: A prospective cohort study of postoperative patients admitted to the ICU. Blood samples for analysis were taken within 3 hours from admission to the ICU including pancreatic stone protein, white blood cell counts, C-reactive protein, interleukin-6, and procalcitonin.
Objectives: C-telopeptide crosslaps (CTX) and bone-specific alkaline phosphatase (BAP) do not provide sufficient sensitivity and specificity for diagnosis of osteoporosis. Cathepsin K (CatK), osteoprotegerin (OPG), and receptor activator of nuclear factor κB ligand (total (t) and soluble (s) RANKL) play an important role in bone metabolism. Thus serum levels of biochemical markers, each or in combination, may be useful in diagnosis of osteoporosis.
View Article and Find Full Text PDFBackground & Aims: The transcription factor nuclear factor-κB (NF-κB) (a heterodimer of NF-κB1p50 and RelA) is activated rapidly in acute pancreatitis (AP). However, it is not clear whether NF-κB promotes or protects against AP. We used the NF-κB inhibitor protein, inhibitor of κB (IκB)α, to study the roles of NF-κB in the development of AP in mice.
View Article and Find Full Text PDFBackground: Acute pancreatitis has long been considered a disorder of pancreatic self-digestion, in which intracellular activation of digestive proteases induces tissue injury. Chemokines, released from damaged pancreatic cells then attract inflammatory cells, whose systemic action ultimately determines the disease severity. In the present work the opposite mechanism is investigated; that is, whether and how inflammatory cells can activate intracellular proteases.
View Article and Find Full Text PDFObjectives: Cathepsin K (CatK) is expressed in high levels in osteoplasts and therefore plays an important role in bone resorption. Thus CatK serum levels may be useful in the diagnosis of chronic bone disorders such as osteopenia and osteoporosis. Therefore we aimed at studying CatK levels in women putatively free of known skeletal disorders.
View Article and Find Full Text PDFObjectives: Autoimmune pancreatitis (AIP) is thought to be an immune-mediated inflammatory process, directed against the epithelial components of the pancreas. The objective was to identify novel markers of disease and to unravel the pathogenesis of AIP.
Methods: To explore key targets of the inflammatory process, we analyzed the expression of proteins at the RNA and protein level using genomics and proteomics, immunohistochemistry, western blot, and immunoassay.
Background & Aims: Acute pancreatitis (AP) is a serious, unpredictable clinical problem, the pathophysiology of which is poorly understood. Here, we evaluate whether betacellulin (BTC), a ligand of the epidermal growth factor receptor also able to activate the proapoptotic ERBB4 receptor, can protect against experimental AP.
Methods: AP was induced in transgenic mice overexpressing BTC (BTC-tg), control mice, or control mice after administration of recombinant BTC.
Background & Aims: Acute pancreatitis is characterized by an activation cascade of digestive enzymes in the pancreas. The first of these, trypsinogen, can be converted to active trypsin by the peptidase cathepsin B (CTSB). We investigated whether cathepsin L (CTSL) can also process trypsinogen to active trypsin and has a role in pancreatitis.
View Article and Find Full Text PDFBest Pract Res Clin Gastroenterol
May 2008
The mammalian pancreas originates from two developing buds on the dorsal and ventral side of the duodenum which fuse and convert into a single mixed gland, composed of exocrine and endocrine cells. In the adult organism, the exocrine pancreas consists of acinar and ductal cells which are organised in a lobular branched tissue architecture and secrete and transport digestive enzymes into the duodenum. Mature endocrine cells, which represent only 1-2% of the pancreatic organ volume, form aggregates of so called islets of Langerhans within the exocrine pancreatic tissue and control glucose homeostasis by secretion of glucagon, insulin and other hormones into the bloodstream.
View Article and Find Full Text PDFProteinase-activated receptors (PARs), a subfamily of G protein-coupled receptors, which are activated by serine proteases, such as trypsin, play pivotal roles in the CNS. Mesotrypsin (trypsin IV) has been identified as a brain-specific trypsin isoform. However, its potential physiological role concerning PAR activation in the brain is largely unknown.
View Article and Find Full Text PDF