Publications by authors named "Walter Habeler"

The retinal pigment epithelium (RPE), a multifunctional cell monolayer located at the back of the eye, plays a crucial role in the survival and homeostasis of photoreceptors. Dysfunction or death of RPE cells leads to retinal degeneration and subsequent vision loss, such as in Age-related macular degeneration and some forms of Retinitis Pigmentosa. Therefore, regenerative medicine that aims to replace RPE cells by new cells obtained from the differentiation of human pluripotent stem cells, is the focus of intensive research.

View Article and Find Full Text PDF

The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed.

View Article and Find Full Text PDF

The rapid progress in the field of stem cell research has laid strong foundations for their use in regenerative medicine applications of injured or diseased tissues. Growing evidences indicate that some observed therapeutic outcomes of stem cell-based therapy are due to paracrine effects rather than long-term engraftment and survival of transplanted cells. Given their ability to cross biological barriers and mediate intercellular information transfer of bioactive molecules, extracellular vesicles are being explored as potential cell-free therapeutic agents.

View Article and Find Full Text PDF

Age-related macular degeneration as well as some forms of Retinitis Pigmentosa (RP) are characterized by a retinal degeneration involving the retinal pigment epithelium (RPE). Various strategies were proposed to cure these disorders including the replacement of RPE cells using human pluripotent stem cells (hPSCs), an unlimited source material to generate in vitro RPE cells. The formulation strategy of the cell therapy (either a reconstructed sheet or a cell suspension) is crucial to achieve an efficient and long lasting therapeutic effect.

View Article and Find Full Text PDF

In developed countries, blindness and visual impairment are caused mainly by diseases affecting the retina. These retinal degenerative diseases, including age-related macular dystrophy (AMD) and inherited retinal diseases such as retinitis pigmentosa (RP), are the predominant causes of human blindness worldwide and are responsible for more than 1.5 million cases in France and more than 30 million cases worldwide.

View Article and Find Full Text PDF

Dysfunction or death of retinal pigment epithelial (RPE) cells is involved in some forms of Retinitis Pigmentosa and in age-related macular degeneration (AMD). Since there is no cure for most patients affected by these diseases, the transplantation of RPE cells derived from human pluripotent stem cells (hPSCs) represents an attractive therapeutic alternative. First attempts to transplant hPSC-RPE cells in AMD and Stargardt patients demonstrated the safety and suggested the potential efficacy of this strategy.

View Article and Find Full Text PDF

Several pathological conditions of the eye affect the functionality and/or the survival of the retinal pigment epithelium (RPE). These include some forms of retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Cell therapy is one of the most promising therapeutic strategies proposed to cure these diseases, with already encouraging preliminary results in humans.

View Article and Find Full Text PDF

Recent clinical trials based on human pluripotent stem cell-derived retinal pigment epithelium cells (hPSC-RPE cells) were clearly a success regarding safety outcomes. However the delivery strategy of a cell suspension, while being a smart implementation of a cell therapy, might not be sufficient to achieve the best results. More complex reconstructed tissue formulations are required, both to improve functionality and to target pathological conditions with altered Bruch's membrane like age-related macular degeneration (AMD).

View Article and Find Full Text PDF

Replacing defective retinal pigment epithelial (RPE) cells with those derived from human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs) is a potential strategy for treating retinal degenerative diseases. Early clinical trials have demonstrated that hESC-derived or hiPSC-derived RPE cells can be delivered safely as a suspension to the human eye. The next step is transplantation of hESC/hiPSC-derived RPE cells as cell sheets that are more physiological.

View Article and Find Full Text PDF

Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In 2 wk, we generated both retinal pigmented epithelial cells and self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs).

View Article and Find Full Text PDF

Our purpose was to investigate genes and molecular mechanisms involved in patients with Leber congenital amaurosis (LCA) and to model this type of LCA for drug screening. Fibroblasts from two unrelated clinically identified patients with a yet undetermined gene mutation were reprogrammed to pluripotency by retroviral transduction. These human induced pluripotent stem cells (hiPSCs) were differentiated into neural stem cells (NSCs) that mimicked the neural tube stage and retinal pigmented epithelial (RPE) cells that could be targeted by the disease.

View Article and Find Full Text PDF

Recent studies have significantly improved our ability to investigate cell transplantation and study the physiology of transplanted cells in cardiac tissue. Several previous studies have shown that fully-immersed heart slices can be used for electrophysiological investigations. Additionally, ischemic heart slices induced by glucose and oxygen deprivation offer a useful tool to investigate mechanical integration and to measure forces of contraction of engrafted cells, at least for short term analysis.

View Article and Find Full Text PDF

Aims: Within the framework of studies aiming at regenerative medicine for cardiovascular disease, we have developed an in vitro model to analyse human embryonic stem (ES) cell engraftment into the myocardium.

Methods And Results: This model is based on organotypic rat ventricular slices maintained in culture at the air-medium interface on semi-porous membranes. Survival and differentiation of human cardiomyocytes derived from ES cells were then assessed for several months.

View Article and Find Full Text PDF

Ovarian cancer represents a suitable disease for gene therapy because of the containment of neoplastic cells in the peritoneal cavity even at advanced tumor stages. The aim of this study was to investigate whether intraperitoneal administration of a lentiviral vector encoding murine interferon-alpha (LV-IFN) could have therapeutic activity in a transplantable ovarian cancer model. Multiple injections of low amounts of LV-IFN into severe combined immunodeficiency (SCID) mice bearing IGROV-1 or OC316 ovarian cancer cells elicited remarkable antitumor activity, leading to prolongation of survival in the majority of animals.

View Article and Find Full Text PDF

Generation of a vascular network is a hallmark of solid tumor growth, and attempts to switch off the tumor angiogenic phenotype are promising. However, this angiogenic potential might also be exploited to obtain incorporation into tumor vessels of genetically modified third-party cells, which could behave as targets of immunologic or pharmacologic attack. With this in mind, we addressed the efficiency and selectivity of third-party cell recruitment into experimental tumors generated in severe combined immunodeficiency mice.

View Article and Find Full Text PDF

Local gene therapy could be a therapeutic option for ovarian carcinoma, a life-threatening malignancy, because of disease containment within the peritoneal cavity in most patients. Lentiviral vectors, which are potentially capable of stable transgene expression, may be useful to vehicle therapeutic molecules requiring long-term production in these tumors. To investigate this concept, we used lentiviral vectors to deliver the enhanced green fluorescent protein (EGFP) gene to ovarian cancer cells.

View Article and Find Full Text PDF

The enhanced green fluorescent protein (EGFP) is increasingly used as a reporter gene in viral vectors for a number of applications. To establish a system to study the activity of cis-acting cellular regulatory sequences, we deleted the viral enhancer in EGFP-carrying retroviral vectors and replaced it with cell type-specific elements. In this study, we use this system to demonstrate the activity of the human CD2 lymphoid-specific and the Tie2 endothelial cell type-specific enhancers in cell lines and in primary cells transduced by retroviral vectors.

View Article and Find Full Text PDF