Publications by authors named "Walter Gassmann"

Pathogens generate and secrete effector proteins to the host plant cells during pathogenesis to promote virulence and colonization. If the plant carries resistance (R) proteins that recognize pathogen effectors, effector-triggered immunity (ETI) is activated, resulting in a robust immune response and hypersensitive response (HR). The bipartite effector AvrRps4 from Pseudomonas syringae pv.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on bacterial effector proteins from the AvrRps4 family, which have been valuable in exploring plant immune responses, yet their full functions remain unclear.
  • * The minireview suggests that while the C-termini of the HopK1 and AvrRps4 proteins differ in sequence and structure, they may have similar roles in undermining plant defense mechanisms.
View Article and Find Full Text PDF
Article Synopsis
  • Biomolecular condensates are formed through weak multivalent interactions and polymerization, but the role of polymerization in this process is not well understood.
  • In this study, the researchers discovered that the condensates of the protein SRFR1 in lateral root cap cells are crucial for proper primary root development, with its N-terminal domain being essential for this process.
  • They also found that certain disordered proteins, called dehydrins, can replace a part of SRFR1, which helped identify key functional elements within the protein and led to potential strategies for enhancing plant growth and resilience.
View Article and Find Full Text PDF

The purpose of this paper is to present an argument for why there is a need to re-envision the underlying culture of undergraduate biology education to ensure the success, retention, and matriculation of Black students. The basis of this argument is the continued noted challenges with retaining Black students in the biological sciences coupled with existing research that implicates science contexts (i.e.

View Article and Find Full Text PDF

Enhanced Disease Susceptibility 1 (EDS1), a key component of microbe-triggered immunity and effector-triggered immunity in most higher plants, forms functional heterodimeric complexes with its homologs Phytoalexin Deficient 4 (PAD4) or Senescence-associated Gene 101 (SAG101). Here, the crystal structure of VvEDS1 , the N-terminal domain of EDS1 from Vitis vinifera, is reported, representing the first structure of an EDS1 entity beyond the model plant Arabidopsis thaliana. VvEDS1 has an α/β-hydrolase fold, is similar to the N-terminal domain of A.

View Article and Find Full Text PDF

Accumulating evidence suggests that chloroplasts are an important battleground during various microbe-host interactions. Plants have evolved layered strategies to reprogram chloroplasts to promote biosynthesis of defense-related phytohormones and the accumulation of reactive oxygen species (ROS). In this minireview, we will discuss how the host controls chloroplast ROS accumulation during effector-triggered immunity (ETI) at the level of selective mRNA decay, translational regulation, and autophagy-dependent formation of Rubisco-containing bodies (RCBs).

View Article and Find Full Text PDF

Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications.

View Article and Find Full Text PDF

The plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor family is most closely associated with regulating plant developmental programs. Recently, TCPs were also shown to mediate host immune signaling, both as targets of pathogen virulence factors and as regulators of plant defense genes. However, comprehensive characterization of TCP gene targets is still lacking.

View Article and Find Full Text PDF

During pathogenesis, effector proteins are secreted from the pathogen to the host plant to provide virulence activity for invasion of the host. However, once the host plant recognizes one of the delivered effectors, effector-triggered immunity activates a robust immune and hypersensitive response (HR). In planta, the effector AvrRps4 is processed into the N-terminus (AvrRps4 ) and the C-terminus (AvrRps4 ).

View Article and Find Full Text PDF
Article Synopsis
  • The study shows that the SUMOylome in plants changes locally during development and more broadly during stress, impacting immunity.
  • Enhanced SUMOylation associated with basal immunity is linked to increased SUMO conjugases and decreased proteases, influenced by various SUMO isoforms.
  • The protein SRFR1 is crucial for regulating SUMOylation stability during immune responses, with its degradation leading to rises in salicylic acid and subsequent SUMOylome changes.
View Article and Find Full Text PDF

Plant immunity is mediated in large part by specific interactions between a host resistance protein and a pathogen effector protein, named effector-triggered immunity (ETI). ETI needs to be tightly controlled both positively and negatively to enable normal plant growth because constitutively activated defense responses are detrimental to the host. In previous work, we reported that mutations in (), identified in a suppressor screen, reactivated EDS1-dependent ETI to pv.

View Article and Find Full Text PDF

Plant resistance proteins recognize cognate pathogen avirulence proteins (also named effectors) to implement the innate immune responses called effector-triggered immunity. Previously, we reported that from pv. strain 61 was identified as an gene for .

View Article and Find Full Text PDF

Aluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several negative impacts in plants when taken up along with other nutrients.

View Article and Find Full Text PDF

Regulation of the plant immune system is important for controlling the specificity and amplitude of responses to pathogens and in preventing growth-inhibiting autoimmunity that leads to reductions in plant fitness. In previous work, we reported that SRFR1, a negative regulator of effector-triggered immunity, interacts with SNC1 and EDS1. When SRFR1 is non-functional in the Arabidopsis accession Col-0, SNC1 levels increase, causing a cascade of events that lead to autoimmunity phenotypes.

View Article and Find Full Text PDF

is a biotrophic fungus causing sugarcane smut disease. In this study, we set up a pipeline and used genomic and dual transcriptomic data previously obtained by our group to identify candidate effectors of and their expression profiles in infected smut-resistant and susceptible sugarcane plants. The expression profile of different genes after infection in contrasting sugarcane genotypes assessed by RT-qPCR depended on the plant genotypes and disease progression.

View Article and Find Full Text PDF

Pathogens utilize a repertoire of effectors to facilitate pathogenesis, but when the host recognizes one of them, it causes effector-triggered immunity. The type III effector AvrRps4 is a bipartite effector that is processed in planta into a functional 133-amino acid N-terminus (AvrRps4-N) and 88-amino acid C-terminus (AvrRps4-C). Previous studies found AvrRps4-C to be sufficient to trigger the hypersensitive response (HR) in turnip.

View Article and Find Full Text PDF

CRISPR/Cas9-based systems are efficient genome editing tools in a variety of plant species including soybean. Most of the gene edits in soybean plants are somatic and non-transmissible when Cas9 is expressed under control of constitutive promoters. Tremendous effort, therefore, must be spent to identify the inheritable edits occurring at lower frequencies in plants of successive generations.

View Article and Find Full Text PDF

Inducible expression of a pathogen effector has been proven to be a powerful strategy for dissecting its virulence and avirulence functions. However, leaky expression of some effector proteins can cause drastic physiological changes, such as growth retardation, accelerated senescence, and sterility. Unfortunately, leaky expression from current inducible vectors is unavoidable.

View Article and Find Full Text PDF

Arabidopsis thaliana and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) comprise an effective model pathosystem for resolving mechanisms behind numerous aspects of plant innate immunity. Following the characterization of key molecular components over the past decades, we may begin investigating defense signaling under various environmental conditions to gain a more holistic understanding of the underlying processes.

View Article and Find Full Text PDF

Functionally characterizing plant membrane transport proteins is challenging. Typically, heterologous systems are used to study them. Immature eggs (oocytes) of the South African clawed frog Xenopus laevis are considered an ideal expression system for such studies.

View Article and Find Full Text PDF

One layer of the innate immune system allows plants to recognize pathogen-associated molecular patterns (PAMPS), activating a defense response known as PAMP-triggered immunity (PTI). Maintaining an active immune response, however, comes at the cost of plant growth and development; accordingly, optimization of the balance between defense and development is critical to plant fitness. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor family consists of well-characterized transcriptional regulators of plant development and morphogenesis.

View Article and Find Full Text PDF

In , TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factors (TF) play critical functions in developmental processes. Recent studies suggest they also function in plant immunity, but whether they play an important role in systemic acquired resistance (SAR) is still unknown. NON-EXPRESSER OF PR GENES 1 (NPR1), as an essential transcriptional regulatory node in SAR, exerts its regulatory role in downstream genes expression through interaction with TFs.

View Article and Find Full Text PDF

Copper (Cu) is an essential plant micronutrient. Under scarcity, Cu is reduced to Cu and taken up through specific high-affinity transporters (COPTs). In Arabidopsis, the COPT family consists of six members, either located at the plasma membrane (COPT1, COPT2, and COPT6) or in internal membranes (COPT3 and COPT5).

View Article and Find Full Text PDF

A gene encoding a serine-rich DnaJIII protein called AdDjSKI that has a 4Fe-4S cluster domain was found to be differentially upregulated in the wild peanut, Arachis diogoi in its resistance responses against the late leaf spot causing fungal pathogen Phaeoisariopsis personata when compared with the cultivated peanut, Arachis hypogaea. AdDjSKI is induced in multiple stress conditions in A. diogoi.

View Article and Find Full Text PDF

Bacterial effector proteins secreted into host plant cells manipulate those cells to the benefit of the pathogen, but effector-triggered immunity (ETI) occurs when effectors are recognized by host resistance proteins. The RPS4/RRS1 pair recognizes the Pseudomonas syringae pv. pisi effector AvrRps4.

View Article and Find Full Text PDF