We describe a quantitative analysis of Acanthamoeba castellanii myosin II rod domain images collected from atomic force microscope experiments. These images reveal that the rod domain forms a novel filament structure, most likely requiring unusual head-to-tail interactions. Similar filaments are seen also in negatively stained electron microscopy images.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2005
Protein design studies using coiled coils have illustrated the potential of engineering simple peptides to self-associate into polymers and networks. Although basic aspects of self-assembly in protein systems have been demonstrated, it remains a major challenge to create materials whose large-scale structures are well determined from design of local protein-protein interactions. Here, we show the design and characterization of a helical peptide, which uses phased hydrophobic interactions to drive assembly into nanofilaments and fibrils ("nanoropes").
View Article and Find Full Text PDF