The Bloembergen, Purcell, and Pound (BPP) theory of nuclear magnetic resonance (NMR) relaxation in fluids dating back to 1948 continues to be the linchpin in interpreting NMR relaxation data in applications ranging from characterizing fluids in porous media to medical imaging (MRI). The BPP theory is founded on assuming molecules are hard spheres with H-H dipole pairs reorienting randomly; assumptions that are severe in light of modern understanding of liquids. Nevertheless, it is intriguing to this day that the BPP theory was consistent with the original experimental data for glycerol, a hydrogen-bonding molecular fluid for which the hard-sphere-rigid-dipole assumption is inapplicable.
View Article and Find Full Text PDFTraditional theories of the nuclear magnetic resonance (NMR) autocorrelation function for intra-molecular dipole pairs assume a single-exponential decay, yet the calculated autocorrelation of realistic systems displays a rich, multi-exponential behavior, resulting in anomalous NMR relaxation dispersion (i.e., frequency dependence).
View Article and Find Full Text PDFKerogen-rich shale reservoirs will play a key role during the energy transition, yet the effects of nanoconfinement on the NMR relaxation of hydrocarbons in kerogen are poorly understood. We use atomistic MD simulations to investigate the effects of nanoconfinement on the H NMR relaxation times and of heptane in kerogen. In the case of , we discover the important role of confinement in reducing by ∼3 orders of magnitude from that of bulk heptane, in agreement with measurements of heptane dissolved in kerogen from the Kimmeridge Shale, without any models or free parameters.
View Article and Find Full Text PDFGadolinium-based contrast agents are key in clinical MRI for enhancing the longitudinal NMR relativity () of hydrogen nuclei (H) in water and improving the contrast among different tissues. The importance of MRI in clinical practice cannot be gainsaid, yet the interpretation of MRI relies on models with severe assumptions, reflecting a poor understanding of the molecular-scale relaxation processes. In a step towards building a clearer understanding of the relaxation processes, here we investigate thermal and concentration effects on of the Gd-aqua complex using both semi-classical molecular dynamics (MD) simulations and measurements.
View Article and Find Full Text PDFCalculating the hydration free energy of a macromolecule in all-atom simulations has long remained a challenge, necessitating the use of models wherein the effect of the solvent is captured without explicit account of solvent degrees of freedom. This situation has changed with developments in the molecular quasi-chemical theory (QCT)─an approach that enables calculation of the hydration free energy of macromolecules within all-atom simulations at the same resolution as is possible for small molecular solutes. The theory also provides a rigorous and physically transparent framework to conceptualize and model interactions in molecular solutions and thus provides a convenient framework to investigate the assumptions in implicit solvent models.
View Article and Find Full Text PDFThe self-assembly of block copolymer melts and solutions with two-dimensional density inhomogeneity is studied using modified inhomogeneous statistical associating fluid theory (iSAFT). A real-space combinatorial screening method under density functional theory formalism is proposed and used to map out the phase diagram of block copolymer melts including order-disorder transitions and order-order transitions. The predicted phase diagram agrees well with molecular dynamics simulation and self-consistent field theory.
View Article and Find Full Text PDFAtomistic molecular dynamics simulations are used to predict H NMR relaxation of water from paramagnetic Gd ions in solution at 25 °C. Simulations of the relaxivity dispersion function computed from the Gd-H dipole-dipole autocorrelation function agree within ≃8% of measurements in the range ≃ 5 ↔ 500 MHz, without any adjustable parameters in the interpretation of the simulations, and without any relaxation models. The simulation results are discussed in the context of the Solomon-Bloembergen-Morgan inner-sphere relaxation model, and the Hwang-Freed outer-sphere relaxation model.
View Article and Find Full Text PDFPatchy colloids can be modeled as hard spheres with directional conical association sites. A variety of physical phenomena have been discovered in the patchy colloid system due to its short range and directional interactions. In this work, we combined a cluster distribution theory with generalized Flory and Stockmayer percolation theory to investigate the interplay between phase behavior and percolation for a binary patchy colloid system.
View Article and Find Full Text PDFThe intramolecular H NMR dipole-dipole relaxation of molecular fluids has traditionally been interpreted within the Bloembergen-Purcell-Pound (BPP) theory of NMR intramolecular relaxation. The BPP theory draws upon Debye's theory for describing the rotational diffusion of the H-H pair and predicts a monoexponential decay of the H-H dipole-dipole autocorrelation function between distinct spin pairs. Using molecular dynamics (MD) simulations, we show that for both -heptane and water this is not the case.
View Article and Find Full Text PDFThe mechanism behind the H nuclear magnetic resonance (NMR) frequency dependence of and the viscosity dependence of for polydisperse polymers and bitumen remains elusive. We elucidate the matter through NMR relaxation measurements of polydisperse polymers over an extended range of frequencies ( = 0.01-400 MHz) and viscosities (η = 385-102 000 cP) using and in static fields, field-cycling relaxometry, and in the rotating frame.
View Article and Find Full Text PDFThe mechanism behind the NMR surface-relaxation times () and the large / ratio of light hydrocarbons confined in the nanopores of kerogen remains poorly understood and consequently has engendered much debate. Toward bringing a molecular-scale resolution to this problem, we present molecular dynamics (MD) simulations of H NMR relaxation and diffusion of -heptane in a polymer matrix. The high-viscosity polymer is a model for kerogen and bitumen that provides an organic "surface" for heptane.
View Article and Find Full Text PDFPatchy colloids and associating fluids have attracted continued interest due to the interesting phase behavior and self-assembly in solution. The ability to fabricate patchy colloids with multiple attractive surface patches of different number, size, shape, and relative location makes patchy colloids a good candidate as building blocks to form complex advanced materials. However, a theory that clearly relates the self-assembled structures that form based on the anisotropic interactions has been missing.
View Article and Find Full Text PDFWe study the phase behavior of associating dendrimers in explicit solvents using classical density functional theory. The existence of association enables uptake of solvent inside the dendrimer even for unfavorable Lennard-Jones interaction between the solvent and dendrimer. Depending on the distributions of associating sites, the dendrimer conformation can be either dense-core or dense-shell.
View Article and Find Full Text PDFIn this work, we develop a thermodynamic perturbation theory using a two-density formalism framework to model the bond cooperativity effect for associating hard sphere and Lennard-Jones fluids. The theory predictions are compared with Monte Carlo simulation results and they are in excellent agreement. We incorporate bond angle dependent ring formation into the theory to calculate hydrogen fluoride thermodynamic properties.
View Article and Find Full Text PDFCO competitive sorption with shale gas under various conditions from simple to complex pore characteristics is studied using a molecular density functional theory (DFT) that reduces to perturbed chain-statistical associating fluid theory in the bulk fluid region. The DFT model is first verified by grand canonical Monte Carlo simulation in graphite slit pores for pure and binary component systems at different temperatures, pressures, pore sizes, and bulk gas compositions for methane/ethane with CO. Then, the model is utilized in multicomponent systems that include CH, CH, and C3+ components of different compositions.
View Article and Find Full Text PDFBlock copolymer micelle is one of the most versatile self-assembled structures with applications in drug delivery, cosmetic products, and micellar-enhanced ultrafiltration. The key to design an effective block copolymer to form micelles is to understand how molecular architecture affects critical micelle concentrations, micellar dimensions, and partitioning of solute into the micelle. In this work, we studied micelles from nonionic block copolymers using interfacial statistical associating fluid theory a density functional theory, which explicitly includes block copolymer-water hydrogen bonding and water-water hydrogen bonding.
View Article and Find Full Text PDFWe study binary mixtures of multi-bonding single site solute particles in a solvent comprising patchy colloid particles. The particles in the mixture interact by very short-ranged attraction and hard-sphere repulsion. The attractive patch on the solute can bond with multiple solvent particles, whereas the patch on the solvent is restricted to bond only once.
View Article and Find Full Text PDFModified inhomogeneous statistical associating fluid theory (iSAFT) density functional theory is extended to dendrimer molecules in solvents of varying quality. The detailed structures of isolated dendrimers in implicit solvent are calculated and have a semi-quantitative agreement with simulation results available in the literature. The dendrimers form dense-core structures under all conditions, while their radius of gyration follows different scaling laws.
View Article and Find Full Text PDFQuantifying the statistics of occupancy of solvent molecules in the vicinity of solutes is central to our understanding of solvation phenomena. Number fluctuations in small solvation shells around solutes cannot be described within the macroscopic grand canonical framework using a single chemical potential that represents the solvent bath. In this communication, we hypothesize that molecular-sized observation volumes such as solvation shells are best described by coupling the solvation shell with a mixture of particle baths each with its own chemical potential.
View Article and Find Full Text PDFWe derive an expression for the chemical potential of an associating solute in a solvent relative to the value in a reference fluid using the quasichemical organization of the potential distribution theorem. The fraction of times the solute is not associated with the solvent, the monomer fraction, is expressed in terms of (a) the statistics of occupancy of the solvent around the solute in the reference fluid and (b) the Widom factors that arise because of turning on solute-solvent association. Assuming pair-additivity, we expand the Widom factor into a product of Mayer f-functions and the resulting expression is rearranged to reveal a form of the monomer fraction that is analogous to that used within the statistical associating fluid theory (SAFT).
View Article and Find Full Text PDFThe prediction of fluid phase behavior in nanoscale pores is critical for shale gas/oil development. In this work, we use a molecular density functional theory (DFT) to study the effect of molecular size and shape on partitioning to graphite nanopores as a model of shale. Here, interfacial statistical associating fluid theory (iSAFT) is applied to model alkane (C - C) adsorption/desorption/phase behavior in graphite slit pores for both pure fluids and mixtures.
View Article and Find Full Text PDFExperiments show that at 298 K and 1 atm pressure, the transfer free energy, μ, of water from its vapor to liquid normal alkanes CH (n=5…12) is negative. Earlier it was found that with the united-atom TraPPE model for alkanes and the SPC/E model for water, one had to artificially enhance the attractive alkane-water cross interaction to capture this behavior. Here we revisit the calculation of μ using the polarizable AMOEBA and the non-polarizable Charmm General (CGenFF) forcefields.
View Article and Find Full Text PDF