Drug discovery is a highly complex process requiring scientists from wide-ranging disciplines to work together in a well-coordinated and streamlined fashion. While the process can be compartmentalized into well-defined functional domains, the success of the entire enterprise rests on the ability to exchange data conveniently between these domains, and integrate it in meaningful ways to support the design, execution and interpretation of experiments aimed at optimizing the efficacy and safety of new drugs. This, in turn, requires information management systems that can support many different types of scientific technologies generating data of imposing complexity, diversity and volume.
View Article and Find Full Text PDFWe describe the application of particle swarms for the development of quantitative structure-activity relationship (QSAR) models based on k-nearest neighbor and kernel regression. Particle swarms is a population-based stochastic search method based on the principles of social interaction. Each individual explores the feature space guided by its previous success and that of its neighbors.
View Article and Find Full Text PDFDespite their growing popularity among neural network practitioners, ensemble methods have not been widely adopted in structure-activity and structure-property correlation. Neural networks are inherently unstable, in that small changes in the training set and/or training parameters can lead to large changes in their generalization performance. Recent research has shown that by capitalizing on the diversity of the individual models, ensemble techniques can minimize uncertainty and produce more stable and accurate predictors.
View Article and Find Full Text PDFWe present a new feature selection algorithm for structure-activity and structure-property correlation based on particle swarms. Particle swarms explore the search space through a population of individuals that adapt by returning stochastically toward previously successful regions, influenced by the success of their neighbors. This method, which was originally intended for searching multidimensional continuous spaces, is adapted to the problem of feature selection by viewing the location vectors of the particles as probabilities and employing roulette wheel selection to construct candidate subsets.
View Article and Find Full Text PDF