Publications by authors named "Walter Carvalho"

An integrated biorefining strategy was applied to fractionate Sugarcane bagasse (SCB) into its major constituents, enabling high-yield conversion of the fractionated materials into high-value coproducts alongside cellulosic ethanol. Pilot-scale steam explosion produced a hydrolysate rich in low molecular weight xylooligosaccharides that had a high in vitro efficacy as a prebiotic towards different bifidobacteria. Lignin recovered after alkaline treatment of the steam-exploded SCB was converted into uniform spherical lignin nanoparticles (11.

View Article and Find Full Text PDF

Background: The recalcitrance of lignocellulosic materials is a major limitation for their conversion into fermentable sugars. Lignin depletion in new cultivars or transgenic plants has been identified as a way to diminish this recalcitrance. In this study, we assessed the success of a sugarcane breeding program in selecting sugarcane plants with low lignin content, and report the chemical composition and agronomic characteristics of eleven experimental hybrids and two reference samples.

View Article and Find Full Text PDF

Background: Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane.

View Article and Find Full Text PDF

Chemithermomechanical (CTM) processing was used to pretreat sugarcane bagasse with the aim of increasing cell wall accessibility to hydrolytic enzymes. Yields of the pretreated samples were in the range of 75-94%. Disk refining and alkaline-CTM and alkaline/sulfite-CTM pretreatments yielded pretreated materials with 21.

View Article and Find Full Text PDF

Experiments based on a 2(3) central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar-alcohol mill. The independent variables selected for study were temperature, varied from 112.5°C to 157.

View Article and Find Full Text PDF

This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H(2)SO(4) with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, β-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases.

View Article and Find Full Text PDF

Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of L-arabinose, 4-O-methyl-D-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 degrees C.

View Article and Find Full Text PDF

The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L).

View Article and Find Full Text PDF
Article Synopsis
  • Wheat straw hemicellulosic hydrolysate was utilized as a source for producing xylitol, a sugar alcohol.
  • Using a medium that contains xylose to grow the inoculum did not enhance xylitol production from the hydrolysate.
  • The hydrolysate underwent detoxification treatment with 2.5% activated charcoal to effectively remove harmful inhibitory substances.
View Article and Find Full Text PDF

Candida guilliermondii FTI 20037 cells were entrapped in Ca-alginate beads and used for xylose-to-xylitol bioconversions during five successive batches in a stirred tank reactor. Supplemented sugarcane bagasse hemicellulosic hydrolysate was used as the fermentation medium. The average volume of the Ca-alginate beads was reduced by about 30% after the 600 h taken to perform the five bioconversion cycles, thus demonstrating physical instability under the conditions prevailing in the reactor vessel.

View Article and Find Full Text PDF

A 2(2) full factorial design was employed to evaluate the effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate obtained in a 250-L reactor. The acid loading and the residence time were varied from 70 to 130 mg acid per gram of dry bagasse and from 10 to 30 min, respectively, while the temperature (121 degrees C) and the bagasse loading (10%) were kept constant. Both the sulfuric acid loading and the residence time influenced the concentrations of xylose and inhibitors in the hydrolysate.

View Article and Find Full Text PDF

Xylose-to-xylitol bioconversion was performed utilizing Candida guilliermondii immobilized in sugarcane bagasse and cultured in Erlenmeyer flasks using sugarcane bagasse hydrolysate as the source of xylose. Fermentations were carried out according to a factorial design, and the independent variables considered were treatment, average diameter, and amount of bagasse used as support for cell immobilization. By increasing the amount of support, the xylitol yield decreased, whereas the biomass yield increased.

View Article and Find Full Text PDF

In addition to stimulating body growth, growth or somatotrophic hormone plays an important role in metabolism, body composition, lipid profile, cardiovascular status and longevity. Its control is multiregulated by hormones, metabolites and hypothalamic peptides. Obtained data of the isolated growth hormone deficiency (IGHD) after the description of the IVS1+1G-->A GHRH receptor gene mutation in individuals of Itabaianinha County are reviewed.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on producing xylitol through batch fermentation using a specific yeast called Candida guilliermondii and wheat straw hemicellulose hydrolysate in a stirred tank reactor.
  • After 54 hours, the process successfully converted 30.5 g of xylose per liter into 27.5 g of xylitol per liter.
  • This resulted in a high conversion yield of 0.9 grams of xylitol for every gram of xylose and a productivity rate of 0.5 grams of xylitol per liter per hour.
View Article and Find Full Text PDF

Candida guilliermondii cells, immobilized in Ca-alginate beads, were used for batch xylitol production from concentrated sugarcane bagasse hydrolyzate. Maximum xylitol concentration (20.6 g/L), volumetric productivity (0.

View Article and Find Full Text PDF

Candida guilliermondii cells were immobilized in Ca-alginate beads and used for xylitol production from concentrated sugarcane bagasse hydrolysate. A full factorial design was employed to determine whether variations in the immobilization conditions would have any effects on the beads, chemical stability and on the xylitol production rates. Duplicate fermentation runs were carried out in 125-mL Erlenmeyer flasks maintained in a rotatory shaker at 30 degrees C and 200 rpm for 72 h.

View Article and Find Full Text PDF

Candida guilliermondii cells were immobilized in Ca-alginate beads and used for xylitol production from concentrated sugarcane bagasse hydrolysate during five successive fermentation batches, each lasting 48 hours. The bioconversion efficiency of 53.2%, the productivity of 0.

View Article and Find Full Text PDF