Platinum germanides (PtGe) were investigated for infrared plasmonic applications. Layers of Pt and Ge were deposited and annealed. X-ray diffraction identified PtGe(2) and Pt(2)Ge(3) phases, and x-ray photo-electron spectroscopy determined vertical atomic composition profiles for the films.
View Article and Find Full Text PDFDesign and simulation results are presented for an ultralow switching energy, resonator based, silicon-on-insulator (SOI) electro-optical modulator. The nanowire waveguide and Q ~8500 resonator are seamlessly integrated via a high-transmission tapered 1D photonic crystal cavity waveguide structure. A lateral p-n junction of modulation length L(m) ~λ is used to alter the index of refraction and, therefore, shift the resonance wavelength via fast carrier depletion.
View Article and Find Full Text PDFThe semimetal antimony, with a plasma frequency ~80 times less than that of gold, is potentially useful as a host for infrared surface polaritons (SPs). Relevant IR SP properties, including the frequency-dependent propagation length and penetration depths for fields into the media on either side of the interface, were determined from optical constants measured on optically-thick thermally-evaporated Sb films over the wavelength range 1 to 40 μm. Plasma and carrier relaxation frequencies were determined from Drude-model fits to these data.
View Article and Find Full Text PDFWe experimentally demonstrate a wideband near-perfect light absorber in the midwave IR region using a multiplexed plasmonic metal structure. The wideband near-perfect light absorber is made of two different size gold metal squares multiplexed on a thin dielectric spacing layer on top of a thick metal layer in each unit cell. We also fabricate regular nonmultiplexed structure perfect light absorbers.
View Article and Find Full Text PDFWe present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (>100 μm) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (<8 h) fabrication, and three-dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer.
View Article and Find Full Text PDFWe demonstrate the feasibility of fabricating heterojunctions of semiconductors with high mismatches in lattice constant and coefficient of thermal expansion by employing nanomembrane bonding. We investigate the structure of and electrical transport across the interface of a Si/Ge bilayer formed by direct, low-temperature hydrophobic bonding of a 200 nm thick monocrystalline Si(001) membrane to a bulk Ge(001) wafer. The membrane bond has an extremely high quality, with an interfacial region of ∼1 nm.
View Article and Find Full Text PDFIntegrated chip-scale optical systems are an attractive platform for the implementation of non-linear optical interactions as they promise compact robust devices that operate reliably with lower power consumption compared to analogs based on bulk nonlinear crystals. The use of guided modes to facilitate nonlinear parametric interactions between optical fields, as opposed to bulk beams, has certain implications on optical parametric oscillations, the most important of which are additional methods for achieving phase synchronism and reduced threshold power due to the tight confinement associated with the guided modes. This work presents a theoretical investigation on the use of polarization dependent mode dispersion in guided wave structures as a means to achieve non-linear parametric oscillations from continuous wave sources with outputs in the mid-infrared region of the spectrum.
View Article and Find Full Text PDFWe investigate the electromagnetic response of the concentric multi-ring, or the bull's eye, structure as an extension of the dual-ring metamaterial which exhibits electromagnetically-induced transparency (EIT)-like transmission characteristics. Our results show that adding inner rings produces additional EIT-like peaks, and widens the metamaterial's spectral range of operation. Analyses of the dispersion characteristics and induced current distribution further confirmed the peak's EIT-like nature.
View Article and Find Full Text PDFWe present a simplified analytic formula that may be used to design gratings intended to couple long-wave infrared radiation to surface plasmons. It is based on the theory of Hessel and Oliner (1965). The recipe is semiempirical, in that it requires knowledge of a surface-impedance modulation amplitude, which is found here as a function of the grating groove depth and the wavelength for silver lamellar gratings at CO(2) laser wavelengths.
View Article and Find Full Text PDFWe study guided modes in a conductor-gap-dielectric (CGD) system that includes a low-index dielectric gap layer of deep sub-wavelength thickness sandwiched between a conductor and a high-index dielectric cladding. Analysis of the dispersion equation for CGD modes provides an analytical estimation for the cut-off thickness of the gap layer. This guided mode is unusual because it exists when the gap thickness is less than the cutoff thickness.
View Article and Find Full Text PDFThe realization of plasmo-electronic integrated circuits in a silicon chip will be enabled by two new plasmonic materials that are proposed and modeled in this article. The first is ion-implanted Si (n-type or p-type) at the surface of an intrinsic Si chip. The second is a thin-layer silicide such as Pd(2)Si, NiSi, PtSi(2) WSi(2) or CoSi(2) formed at the Si chip surface.
View Article and Find Full Text PDF