Beneficial interactions between plant roots and Trichoderma species lead to both local and systemic enhancements of the plant immune system through a mechanism known as priming of defenses. Previously, we have reported a number of genes and proteins that are differentially regulated in distant tissues of maize plants following inoculation with Trichoderma atroviride. To further investigate the mechanisms involved in the systemic activation of plant responses, here we have further evaluated the regulatory aspects of a selected group of genes when priming is triggered in maize plants.
View Article and Find Full Text PDFTrichoderma activates plant proteins to counteract Fusarium infection. Comparison between proteomic and transcriptomic data suggests differential response regulation. Proteins from the phenylpropanoid pathway are activated to quickly respond to pathogen attack.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2019
In the present study, we investigated the induced systemic resistance (ISR) activated by the beneficial fungus Trichoderma atroviride in maize plants, and the early immunological responses triggered after challenge with the ear rot pathogen Fusarium verticillioides. By transcriptional analysis, we were able to identify the gene core set specifically modulated in silks of maize plants expressing ISR. Our results showed that the main transcriptional reprogramming falls into genes involved in five main functional categories: cell structure or cell wall, amino acid and protein metabolism, stress responses, signaling, and transport.
View Article and Find Full Text PDFColletotrichum graminicola causes maize anthracnose, an agronomically important disease with a worldwide distribution. We have identified a fungalysin metalloprotease (Cgfl) with a role in virulence. Transcriptional profiling experiments and live cell imaging show that Cgfl is specifically expressed during the biotrophic stage of infection.
View Article and Find Full Text PDFPlant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1.
View Article and Find Full Text PDFCerato-platanins are an interesting group of small, secreted, cysteine-rich proteins that have been implicated in virulence of certain plant pathogenic fungi. The relatively recent discovery of these proteins in plant beneficial fungi like Trichoderma spp., and their positive role in induction of defense in plants against invading pathogens has raised the question as to whether these proteins are effectors or elicitor molecules.
View Article and Find Full Text PDFMicrobiology (Reading)
October 2014
Using a gene disruption strategy, we generated mutants in the gliP locus of the plant-beneficial fungus Trichoderma virens that were no longer capable of producing gliotoxin. Phenotypic assays demonstrated that the gliP-disrupted mutants grew faster, were more sensitive to oxidative stress and exhibited a sparse colony edge compared with the WT strain. In a plate confrontation assay, the mutants deficient in gliotoxin production were ineffective as mycoparasites against the oomycete, Pythium ultimum, and the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, but retained mycoparasitic ability against Rhizoctonia solani.
View Article and Find Full Text PDFThe Colletotrichum plant-like subtilisins (CPLSs) are a family of proteins found only in species of the phytopathogenic fungus Colletotrichum. CPLSs have high similarity to plant subtilisins and our previous work has shown that they were acquired by an ancient horizontal gene transfer event from plants. The rapid growth of sequence data in public databases enabled us to reexamine the structure and evolution of the CPLSs.
View Article and Find Full Text PDFThe genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited.
View Article and Find Full Text PDFMillions of years of coevolution between plants and pathogens can leave footprints on their genomes and genes involved on this interaction are expected to show patterns of positive selection in which novel, beneficial alleles are rapidly fixed within the population. Using information about upregulated genes in maize during Colletotrichum graminicola infection and resources available in the Phytozome database, we looked for evidence of positive selection in the Poaceae lineage, acting on protein coding sequences related with plant defense. We found six genes with evidence of positive selection and another eight with sites showing episodic selection.
View Article and Find Full Text PDFHemibiotrophic plant pathogens first establish a biotrophic interaction with the host plant and later switch to a destructive necrotrophic lifestyle. Studies of biotrophic pathogens have shown that they actively suppress plant defenses after an initial microbe-associated molecular pattern-triggered activation. In contrast, studies of the hemibiotrophs suggest that they do not suppress plant defenses during the biotrophic phase, indicating that while there are similarities between the biotrophic phase of hemibiotrophs and biotrophic pathogens, the two lifestyles are not analogous.
View Article and Find Full Text PDFOxygen-tolerant [NiFe] hydrogenases may be used in future photobiological hydrogen production systems once the enzymes can be heterologously expressed in host organisms of interest. To achieve heterologous expression of [NiFe] hydrogenases in cyanobacteria, the two hydrogenase structural genes from Alteromonas macleodii Deep ecotype (AltDE), hynS and hynL, along with the surrounding genes in the gene operon of HynSL were cloned in a vector with an IPTG-inducible promoter and introduced into Synechococcus elongatus PCC7942. The hydrogenase protein was expressed at the correct size upon induction with IPTG.
View Article and Find Full Text PDFHydrogenases are enzymes involved in the bioproduction of hydrogen, a clean alternative energy source whose combustion generates water as the only end product. In this article we identified and characterized a [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii "deep ecotype" with unusual stability toward oxygen and high temperature. The A.
View Article and Find Full Text PDF• Sucrose exuded by plants into the rhizosphere is a crucial component for the symbiotic association between the beneficial fungus Trichoderma and plant roots. In this article we sought to identify and characterize the molecular basis of sucrose uptake into the fungal cells. • Several bioinformatics tools enabled us to identify a plant-like sucrose transporter in the genome of Trichoderma virens Gv29-8 (TvSut).
View Article and Find Full Text PDFThe presence of two alkaline/neutral invertases (Inv-A and Inv-B) in the filaments of Nostoc (also named Anabaena) sp. strain PCC 7120 and the involvement of sucrose metabolism in nitrogen fixation led us to investigate the physiological function of those isoforms in cells growing under different nitrogen sources. The highest expression level of each encoding gene was obtained in the presence of ammonium.
View Article and Find Full Text PDFFungal species belonging to the genus Trichoderma colonize the rhizosphere of many plants, resulting in beneficial effects such as increased resistance to pathogens and greater yield and productivity. However, the molecular mechanisms that govern the recognition and association between Trichoderma and their hosts are still largely unknown. In this report, we demonstrate that plant-derived sucrose (Suc) is an important resource provided to Trichoderma cells and is also associated with the control of root colonization.
View Article and Find Full Text PDFThe soilborne fungus Trichoderma virens secretes a small protein (Sm1) that induces local and systemic defenses in plants. This protein belongs to the ceratoplatanin protein family and is mainly present as a monomer in culture filtrates. However, Hypocrea atroviride (the telomorph form of Trichoderma atroviride) secretes an Sm1-homologous protein, Epl1, with high levels of dimerization.
View Article and Find Full Text PDFThe presence of sucrose (Suc) in plastids was questioned for several decades. Although it was reported some decades ago, neither Suc transporters nor Suc metabolizing enzymes were demonstrated to be active in those organelles. By biochemical, immunological, molecular and genetic approaches we show that alkaline/neutral invertases (A/N-Invs) are also localized in chloroplasts of spinach and Arabidopsis.
View Article and Find Full Text PDFWe have previously shown that the beneficial filamentous fungus Trichoderma virens secretes the highly effective hydrophobin-like elicitor Sm1 that induces systemic disease resistance in the dicot cotton (Gossypium hirsutum). In this study we tested whether colonization of roots by T. virens can induce systemic protection against a foliar pathogen in the monocot maize (Zea mays), and we further demonstrated the importance of Sm1 during maize-fungal interactions using a functional genomics approach.
View Article and Find Full Text PDFIt is well accepted that sucrose (Suc) metabolism is involved in responses to environmental stresses in many plant species. In the present study we showed that alkaline invertase (A-Inv) expression is up-regulated in wheat leaves after an osmotic stress or a low-temperature treatment. We demonstrated that the increase of total alkaline/neutral Inv activity in wheat leaves after a stress could be due to the induction of an A-Inv isoform.
View Article and Find Full Text PDF