Publications by authors named "Walter A Korfmacher"

A novel series of benzimidazolone-containing histamine H3-receptor antagonists were prepared and their structure-activity relationship was explored. These benzimidazolone analogs demonstrate potent H3-receptor binding affinities, no P450 enzyme inhibition, and strong H3 functional activity. Compound 1o exhibits the best overall profile with H3Ki=0.

View Article and Find Full Text PDF

A structure-activity relationship study was undertaken to address the lack of oral exposure of the H3 antagonist 1, which incorporated an arylketone. Among a number of sub-series, the 4H-pyrido[1,2-a]pyrimidin-4-one analog 21 showed an improved PK profile in rat and mouse and was active in an obesity model. The pyrimidin-4-one proved to be a novel and useful ketone bioisostere.

View Article and Find Full Text PDF

Liquid extraction surface analysis mass spectrometry (LESA-MS) is a novel surface profiling technique that combines micro-liquid extraction from a solid surface with nano-electrospray mass spectrometry. One potential application is the examination of the distribution of drugs and their metabolites by analyzing ex vivo tissue sections, an area where quantitative whole body autoradiography (QWBA) is traditionally employed. However, QWBA relies on the use of radiolabeled drugs and is limited to total radioactivity measured whereas LESA-MS can provide drug- and metabolite-specific distribution information.

View Article and Find Full Text PDF

It can be argued that the last true paradigm shift in the bioanalytical (BA) arena was the shift from high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to HPLC with tandem mass spectrometry (MS/MS) detection after the commercialization of the triple quadrupole mass spectrometer in the 1990s. HPLC-MS/MS analysis based on selected reaction monitoring (SRM) has become the gold standard for BA assays and is used by all the major pharmaceutical companies for the quantitative analysis of new drug entities (NCEs) as part of the new drug discovery and development process. While LC-MS/MS continues to be the best tool for drug discovery bioanalysis, a new paradigm involving high-resolution mass spectrometry (HRMS) and ultrahigh-pressure liquid chromatography (uHPLC) is starting to make inroads into the pharmaceutical industry.

View Article and Find Full Text PDF

A structure-activity relationship study of the lead piperazinylcarbonylpiperidine compound 3 resulted in the identification of 4-benzimidazolyl-piperidinylcarbonyl-piperidine 6h as a histamine-3 (H(3)) receptor antagonist. Additional optimization of 6h led to the identification of compounds 11i-k with K(i) View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization-tandem mass spectrometric method (MALDI-MS/MS) has proven to be a reliable tool for direct measurement of the disposition of small molecules in animal tissue sections. As example, MALDI-MS/MS imaging system was employed for visualizing the spatial distribution of astemizole and its primary metabolite in rat brain tissues. Astemizole is a second-generation antihistamine, a block peripheral H1 receptor, which was introduced to provide comparable therapeutic benefit but was withdrawn in most countries due to toxicity risks.

View Article and Find Full Text PDF

The rising costs and time associated with bringing new medicines to the market have created a need for a new paradigm for reducing the attrition rates of drug candidates in both preclinical and clinical development stages. Early appraisal of drug metabolism and pharmacokinetic (DMPK) parameters is now possible due to several higher throughput in vitro and in vivo screens. This knowledge of DMPK properties should not only shorten the timelines for the selection of drug candidates but also enhance the probability of their success for development.

View Article and Find Full Text PDF

The lead optimization paradigm includes a team of experts that has a multitude of parameters to consider when moving from an initial lead compound through the lead optimization phase to the development phase. While in the past the team may have had only a medicinal chemist and a pharmacologist, the current team would often include experts in the areas of drug metabolism and pharmacokinetics (DMPK) as well as chemical toxicity. This review provides an overview of the some of the recent advances in the areas of DMPK screening plus a discussion of some of the assays that can be used to begin to screen for toxicity issues.

View Article and Find Full Text PDF

This paper describes the development and partial validation of a fast, sensitive and specific ultra-performance liquid chromatography/tandem mass spectrometric method for the determination of 3-indoxyl sulfate (3-IS), an endogenous compound in mammals, in mouse plasma and brain samples. The analytical method involves direct dilution of samples with water and protein precipitation with acetonitrile containing an internal standard, followed by separation of 3-IS on a MonoChrom C(18) column and detected by selected reaction monitoring (SRM) in negative ionization mode using turbo ion-spray ionization. Due to high endogenous levels of 3-IS in control mouse plasma and brain, blank guinea pig plasma and brain were used for the preparation of standard curves and quality controls (QCs).

View Article and Find Full Text PDF

Background: Matrix-assisted laser desorption/ionization (MALDI)-tandem mass spectrometry (MS)/MS is a proven reliable tool for visualizing the spatial distribution of dosed drugs and their primary metabolites in animal tissue sections.

Materials & Methods: The rat brain tissue sections coated with dihydroxybenzoic acid as matrix, were analyzed by MALDI-MS/MS imaging experiments. The potential metabolites of astemizole in rat brain homogenate selected for MALDI-MS/MS imaging experiments were first identified by high-performance liquid chromatography coupled to an electrospray ionization source and a hybrid-quadrupole-linear-ion-trap mass spectrometer.

View Article and Find Full Text PDF

Atmospheric pressure photoionization (APPI) as an interface for the high-performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) system was employed for the direct determination of 17alpha-ethinylestradiol (EE(2)) in the incubation mixtures to support in vitro hepatic clearance studies. For the APPI source, the radical cation of the analyte via charge exchange with the dopant radical cation was used for the detection of EE(2) in the positive ion mode. It was demonstrated that the major signals of EE(2) in the acetonitrile/water mobile phase were substantially increased by replacing toluene with anisole as the dopant.

View Article and Find Full Text PDF

Lead optimization using drug metabolism and pharmacokinetics (DMPK) parameters has become one of the primary focuses of research organizations involved in drug discovery in the last decade. Using a combination of rapid in vivo and in vitro DMPK screening procedures on a large array of compounds during the lead optimization process has resulted in development of compounds that have acceptable DMPK properties. In this review, we present a general screening paradigm that is currently being used as part of drug discovery at Schering-Plough and we describe a case study using the Hepatitis C Virus (HCV) protease inhibitor program as an example.

View Article and Find Full Text PDF

The aim of this article is to focus on the implementation and the application of matrix-assisted laser desorption/ionization-imaging mass spectrometric system (MALDI-IMS) to determine the disposition or biotransformation pathway of terfenadine and its active metabolite, fexofenadine in mouse and rat whole-body tissue sections. Whole-body MALDI-IMS data showed that the poor oral bioavailability of terfenadine was largely due to high first-pass metabolism in the intestines and the liver before the compound reached systemic circulation.

View Article and Find Full Text PDF

This paper describes the development and qualification of a fast, sensitive and specific ultra-performance liquid chromatography/tandem mass spectrometric (UPLC/MS/MS) method for the determination of diastereomers of SCH 503034 in monkey plasma. The analytical method involves direct protein precipitation with a mixture of methanol/acetonitrile (10/90) containing an internal standard, followed by separation of the stereoisomers on an Acquity UPLC C(18) column and detected by selected reaction monitoring (SRM) in positive ionization mode using atmospheric pressure chemical ionization (APCI). The effects of ion-pairing agents on separation and ionization efficiency were investigated.

View Article and Find Full Text PDF

During drug discovery and development stage, often the question is raised as to whether the drug can reach the site of action which helps researchers better assess the potential value of that compound as a pharmaceutical product and toxicological outcomes. High performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS) has totally replaced HPLC methods that use UV or other detectors for most drug analysis applications. However, HPLC-MS/MS approaches are not able to provide the answer to certain questions regarding the distribution of a drug in various organs or tissues from laboratory animal experiments.

View Article and Find Full Text PDF

This paper describes the development and partial validation of a fast, sensitive and specific ultra-performance liquid chromatography/tandem mass spectrometric (UPLC/MS/MS) method for the determination of testosterone (T) and its four metabolites, 6beta-OH-T, 16alpha-OH-T, 16beta-OH-T and 2alpha-OH-T, in in vitro samples. The analytical method involves direct dilution of samples with acetonitrile containing an internal standard, followed by separation of testosterone and the four metabolites on an Acquity UPLCtrade mark C(18) column and detected by selected reaction monitoring (SRM) in positive ionization mode using turbo ionspray ionization. The parent compound and its metabolites investigated were well separated (Rs >1.

View Article and Find Full Text PDF

Both combinatorial chemistry and parallel synthesis provide a valuable means for the production of large numbers of compounds with diverse molecular architectures that become available for various drug discovery experiments. In both the lead optimization and lead selection stages, one requirement that is common for many processes is the need for bioanalytical support. This review summarizes current high throughput strategies and efficient methodologies that are employed for drug metabolism and pharmacokinetic (DMPK) screens for a series of drug discovery compounds.

View Article and Find Full Text PDF

Packed-column supercritical fluid chromatography (pSFC) coupled to an atmospheric pressure chemical ionization (APCI) source and a tandem mass spectrometer (MS/MS) with minimum sample pretreatment was explored for the rapid and enantioselective determination of (R,S)-propranolol in mouse blood. Serial bleeding of mice is advantageous for the reduction of animal usage, dosing errors, and animal-to-animal variation. The effects of the eluent flow rate and composition as well as the nebulizer temperatures on the ionization efficiency of racemic propranolol and pindolol as model compounds in the positive ion mode under pSFC conditions were studied.

View Article and Find Full Text PDF

Historically, most bioanalytical methods for drug analysis in pharmaceutical industry were developed using HPLC coupled with UV or fluorescence detection. However, there is a trend toward interfacing separation technologies with more sensitive tandem mass spectrometry (MS/MS)-based systems. MS/MS detection offers complete resolution of the parent compounds from their first pass metabolites to avoid extra efforts for separation and sample clean-up procedures resulting in shorter run times.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry is generally considered to be a surface analysis technique. In this report, the profiling depth of imaging mass spectrometry was examined. MALDI matrix solution was found to be able to gain access to the tissue interior and extract analyte molecules to the tissue surface.

View Article and Find Full Text PDF

A novel series of histamine H3 receptor antagonists based on the 4-[(1H-imidazol-4-yl)methyl]piperidine template displaying low CYP2D6 and CYP3A4 inhibitory profiles has been identified. Structural features responsible for the reduction of P450 activity, a typical liability of 4-substituted imidazoles, have been established.

View Article and Find Full Text PDF

The use of high-performance liquid chromatography combined with mass spectrometry (HPLC-MS) or tandem mass spectrometry (HPLC-MS-MS) has proven to be the analytical technique of choice for most assays used in various stages of new drug discovery. A summary of the key components of HPLC-MS systems, as well as an overview of major application areas that use this technique as part of the drug discovery process, will be described here. This review will also provide an introduction into the various types of mass spectrometers that can be selected for the multiple tasks that can be performed using LC-MS as the analytical tool.

View Article and Find Full Text PDF

For higher throughput screening, where the number of new chemical entities (NCEs) to test is rapidly increasing, fast sample turnaround time is essential. In order to increase efficiency a generic high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) method, with a cycle time of 85 s (42 injections/h), was created. This was accomplished through the use of a 1-min ballistic gradient and the optimization of the autosampler.

View Article and Find Full Text PDF

Hydroxyproyl-beta-cyclodextran (HPBCD), methyl cellulose (MC), Tween 80 and PEG400 are commonly used in dosing formulations in pharmacokinetic (PK) studies during the early drug discovery stage. A series of studies was designed to evaluate the potential matrix effects of these dosing vehicles when the samples are assayed by high-performance liquid chromatography combined with tandem mass spectrometry (HPLC/MS/MS). These dosing vehicles were dosed into the rats via either an intravenous (IV) or an oral route (PO) and plasma samples were collected for a 24-h post-dose period.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Walter A Korfmacher"

  • - Walter A. Korfmacher's recent research primarily focuses on the development and optimization of histamine H3-receptor antagonists, with significant work on the synthesis of benzimidazolone derivatives and their structure-activity relationships, revealing their potent binding affinities and functional activities.
  • - His studies also emphasize innovative analytical methodologies, such as Liquid Extraction Surface Analysis Mass Spectrometry (LESA-MS) and Matrix-Assisted Laser Desorption/Ionization (MALDI) imaging, to facilitate drug distribution and metabolism investigations, which improve the profiling of drug candidates in tissues.
  • - Korfmacher advocates for the integration of early drug metabolism and pharmacokinetic (DMPK) evaluation in the drug discovery paradigm, suggesting that it enhances the efficiency of selecting viable drug candidates and reduces overall attrition rates in drug development.