Publications by authors named "Walt W Lilly"

Coprinopsis cinerea (also known as Coprinus cinereus) is a multicellular basidiomycete mushroom particularly suited to the study of meiosis due to its synchronous meiotic development and prolonged prophase. We examined the 15-hour meiotic transcriptional program of C. cinerea, encompassing time points prior to haploid nuclear fusion though tetrad formation, using a 70-mer oligonucleotide microarray.

View Article and Find Full Text PDF

Much remains to be learned about the biology of mushroom-forming fungi, which are an important source of food, secondary metabolites and industrial enzymes. The wood-degrading fungus Schizophyllum commune is both a genetically tractable model for studying mushroom development and a likely source of enzymes capable of efficient degradation of lignocellulosic biomass. Comparative analyses of its 38.

View Article and Find Full Text PDF

The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 10(8) synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes.

View Article and Find Full Text PDF

Proteolytic enzymes, particularly secreted proteases of fungal origin, are among the most important of industrial enzymes, yet the biochemical properties and substrate specificities of these proteins have been difficult to characterize. Genomic sequencing offers a powerful tool to identify potentially novel proteases. The genome of the model basidiomycete Coprinopsis cinereus was found to have an unusually high number of metalloproteases that closely match the M36 peptidase family known as fungalysins.

View Article and Find Full Text PDF

The leaf-litter fungus Coprinus cinereus maintains a pool of free amino acid in its mycelium. When the organism is grown under conditions of high nitrogen availability with 13.2 mmol.

View Article and Find Full Text PDF

Wood-decay fungi depend upon recycling of nitrogen-containing molecules to maintain growth in nitrogen-deficient environments. One of the pools that can support growth in these organisms is the pool of free amino acids. The free amino acid (AA) composition of Schizophyllum commune mycelium grown on the surface of nitrogen-rich (M = 6.

View Article and Find Full Text PDF