According to the Extracorporeal Life Support Organization (ELSO) guidelines, pre-assembled and already primed extracorporeal membrane oxygenation (ECMO) systems can be safely stored for up to 30 days under specific conditions. This study gives a detailed overview of existing pre-assembly practices. An anonymous online survey was conducted among chief perfusionists at German ECMO centers.
View Article and Find Full Text PDFWe implement circuit quantum electrodynamics (cQED) with quantum dots in bilayer graphene, a maturing material platform that can host long-lived spin and valley states. Our device combines a high-impedance ( ≈ 1 kΩ) superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure. Electric dipole coupling between the subsystems allows the resonator to sense the electric susceptibility of the double quantum dot from which we reconstruct its charge stability diagram.
View Article and Find Full Text PDFRealizing the full potential of quantum technologies requires precise real-time control on time scales much shorter than the coherence time. Model-free reinforcement learning promises to discover efficient feedback strategies from scratch without relying on a description of the quantum system. However, developing and training a reinforcement learning agent able to operate in real-time using feedback has been an open challenge.
View Article and Find Full Text PDFSuperposition, entanglement and non-locality constitute fundamental features of quantum physics. The fact that quantum physics does not follow the principle of local causality can be experimentally demonstrated in Bell tests performed on pairs of spatially separated, entangled quantum systems. Although Bell tests, which are widely regarded as a litmus test of quantum physics, have been explored using a broad range of quantum systems over the past 50 years, only relatively recently have experiments free of so-called loopholes succeeded.
View Article and Find Full Text PDFQuantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors.
View Article and Find Full Text PDFQuantum computers hold the promise of solving computational problems that are intractable using conventional methods. For fault-tolerant operation, quantum computers must correct errors occurring owing to unavoidable decoherence and limited control accuracy. Here we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
View Article and Find Full Text PDFSuperconducting circuits are a strong contender for realizing quantum computing systems and are also successfully used to study quantum optics and hybrid quantum systems. However, their cryogenic operation temperatures and the current lack of coherence-preserving microwave-to-optical conversion solutions have hindered the realization of superconducting quantum networks spanning different cryogenic systems or larger distances. Here, we report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters.
View Article and Find Full Text PDFHigh fidelity two-qubit gates exhibiting low cross talk are essential building blocks for gate-based quantum information processing. In superconducting circuits, two-qubit gates are typically based either on rf-controlled interactions or on the in situ tunability of qubit frequencies. Here, we present an alternative approach using a tunable cross-Kerr-type ZZ interaction between two qubits, which we realize with a flux-tunable coupler element.
View Article and Find Full Text PDFSources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled experimental setting. Generation of multi-mode entangled states of radiation with a large entanglement length, that is neither probabilistic nor restricted to generate specific types of states, remains challenging. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide.
View Article and Find Full Text PDFWe present an experimental realization of single-shot nondestructive detection of ensembles of helium Rydberg atoms. We use the dispersive frequency shift of a superconducting microwave cavity interacting with the ensemble. By probing the transmission of the cavity, we determine the number of Rydberg atoms or the populations of Rydberg quantum states when the ensemble is prepared in a superposition.
View Article and Find Full Text PDFSpin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both qubit types on the same chip over a distance that is several orders of magnitude longer than the physical size of the spin qubit. We realize such a link with a frequency-tunable high impedance SQUID array resonator.
View Article and Find Full Text PDFSemiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots. They constitute a promising approach to quantum information processing, complementary to superconducting qubits. Here, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus.
View Article and Find Full Text PDFWe investigate spin states of few electrons in a double quantum dot by coupling them to a magnetic field resilient NbTiN microwave resonator. The electric field of the resonator couples to the electric dipole moment of the charge states in the double dot. For a two-electron state the spin-triplet state has a vanishing electric dipole moment and can therefore be distinguished from the spin-singlet state.
View Article and Find Full Text PDFDeveloping fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot charge qubit strongly coupled to a frequency-tunable high-impedance resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state-dependent frequency shift imparted by the qubit on the dispersively coupled resonator.
View Article and Find Full Text PDFNetworks of nonlinear resonators offer intriguing perspectives as quantum simulators for nonequilibrium many-body phases of driven-dissipative systems. Here, we employ photon correlation measurements to study the radiation fields emitted from a system of two superconducting resonators in a driven-dissipative regime, coupled nonlinearly by a superconducting quantum interference device, with cross-Kerr interactions dominating over on-site Kerr interactions. We apply a parametrically modulated magnetic flux to control the linear photon hopping rate between the two resonators and its ratio with the cross-Kerr rate.
View Article and Find Full Text PDFActive qubit reset is a key operation in many quantum algorithms, and particularly in quantum error correction. Here, we experimentally demonstrate a reset scheme for a three-level transmon artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator.
View Article and Find Full Text PDFWe experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit-resonator resonance condition. In this way, we probe the resonance of a qubit that is driven in an adiabatic, a nonadiabatic, or an intermediate rate, showing distinct quantum features of multiphoton processes and a fringe pattern similar to Landau-Zener-Stückelberg interference.
View Article and Find Full Text PDFElectron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information.
View Article and Find Full Text PDFSharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation .
View Article and Find Full Text PDFThe original HTML version of this Article contained an error in the second mathematical expression in the fourth sentence of the fourth paragraph of the 'Excitation transfer with uniform white noise' section of the Results. This has been corrected in the HTML version of the Article.The original PDF version of this Article incorrectly stated that 'Correspondence and requests for materials should be addressed to A.
View Article and Find Full Text PDFThe process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure.
View Article and Find Full Text PDFRandom numbers are required for a variety of applications from secure communications to Monte Carlo simulation. Yet randomness is an asymptotic property, and no output string generated by a physical device can be strictly proven to be random. We report an experimental realization of a quantum random number generator (QRNG) with randomness certified by quantum contextuality and the Kochen-Specker theorem.
View Article and Find Full Text PDFWe use a three-level artificial atom in the ladder configuration as a source of correlated, single microwave photons of different frequency. The artificial atom, a transmon-type superconducting circuit, is driven at the two-photon transition between ground and second-excited state, and embedded into an on-chip switch that selectively routes different-frequency photons into different spatial modes. Under continuous driving, we measure power cross-correlations between the two modes and observe a crossover between strong antibunching and superbunching, typical of cascade decay, and an oscillatory pattern as the drive strength becomes comparable to the radiative decay rate.
View Article and Find Full Text PDFLow-loss waveguides are required for quantum communication at distances beyond the chip-scale for any low-temperature solid-state implementation of quantum information processors. We measure and analyze the attenuation constant of commercially available microwave-frequency waveguides down to millikelvin temperatures and single photon levels. More specifically, we characterize the frequency-dependent loss of a range of coaxial and rectangular microwave waveguides down to using a resonant-cavity technique.
View Article and Find Full Text PDF