Publications by authors named "Wallen P"

CSF-contacting (CSF-c) cells are present in the walls of the brain ventricles and the central canal of the spinal cord and found throughout the vertebrate phylum. We recently identified ciliated somatostatin-/GABA-expressing CSF-c neurons in the lamprey spinal cord that act as pH sensors as well as mechanoreceptors. In the same neuron, acidic and alkaline responses are mediated through ASIC3-like and PKD2L1 channels, respectively.

View Article and Find Full Text PDF

The basic architecture of the mammalian neocortex is remarkably similar across species. Pallial structures in the reptilian brain are considered amniote precursors of mammalian neocortex, whereas pallia of anamniotes ("lower" vertebrates) have been deemed largely insignificant with respect to homology. Here, we examine the cytoarchitecture of the lateral pallium in the lamprey, the phylogenetically oldest group of extant vertebrates.

View Article and Find Full Text PDF

For survival of the organism, acid-base homeostasis is vital [1, 2]. The respiratory and renal systems are central to this control. Here we describe a novel mechanism, intrinsic to the spinal cord, with sensors that detect pH changes and act to restore pH to physiological levels by reducing motor activity.

View Article and Find Full Text PDF

Cerebrospinal fluid-contacting (CSF-c) cells are found in all vertebrates but their function has remained elusive. We recently identified one type of laterally projecting CSF-c cell in lamprey spinal cord with neuronal properties that expresses GABA and somatostatin. We show here that these CSF-c neurons respond to both mechanical stimulation and to lowered pH.

View Article and Find Full Text PDF

The basic features of the vertebrate nervous system are conserved throughout vertebrate phylogeny to a much higher degree than previously thought. In this mini-review, we show that not only the organization of the different motor programs underlying eye, orienting, locomotor, and respiratory movements are similarly organized, but also that the basic structure of the forebrain engaged in the control of movement is conserved. In the lamprey, which diverged already 560 million years ago from the vertebrate line of evolution leading up to primates, the basic components of the basal ganglia are similar to those of mammals in considerable detail.

View Article and Find Full Text PDF

The lamprey central nervous system has been used extensively as a model system for investigating the networks underlying vertebrate motor behavior. The locomotor networks can be activated by application of glutamate agonists, such as N-methyl-D-aspartic acid (NMDA), to the isolated spinal cord preparation. Many spinal neurons are capable of generating pacemaker-like membrane potential oscillations upon activation of NMDA receptors.

View Article and Find Full Text PDF

Cerebrospinal fluid-contacting (CSF-c) cells are found in all vertebrates, but their function remains elusive. In the lamprey spinal cord, they surround the central canal and some have processes passing the gray matter to the lateral edge of the flattened spinal cord. Stimulation of CSF-c cells at the central canal elicits GABAergic inhibitory postsynaptic potentials (IPSPs) in intraspinal stretch receptor neurons (edge cells).

View Article and Find Full Text PDF

Cerebrospinal fluid-contacting (CSF-c) cells are found in all vertebrates, but their function remains elusive. In the lamprey spinal cord, they surround the central canal and some have processes passing the gray matter to the lateral edge of the flattened spinal cord. Stimulation of CSF-c cells at the central canal elicits GABAergic inhibitory postsynaptic potentials (IPSPs) in intraspinal stretch receptor neurons (edge cells).

View Article and Find Full Text PDF

The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience.

View Article and Find Full Text PDF

  NMDA receptor-dependent, intrinsic membrane potential oscillations are an important element in the operation of the lamprey locomotor network. They involve a cyclic influx of calcium, leading to an activation of calcium-activated potassium (KCa) channels that in turn contributes to the termination of the depolarized plateau and membrane repolarization. In this study, we have investigated the calcium dynamics in different regions of lamprey spinal neurons during membrane potential oscillations, using confocal calcium imaging in combination with intracellular recordings.

View Article and Find Full Text PDF

This paper describes the development of a new biorobotic platform inspired by the lamprey. Design, fabrication and implemented control are all based on biomechanical and neuroscientific findings on this eel-like fish. The lamprey model has been extensively studied and characterized in recent years because it possesses all basic functions and control mechanisms of higher vertebrates, while at the same time having fewer neurons and simplified neural structures.

View Article and Find Full Text PDF

Postinhibitory rebound (PIR) can play a significant role for producing stable rhythmic motor patterns, like locomotion, by contributing to burst initiation following the phase of inhibition, and PIR may also be a target for modulatory systems acting on the network. The current aim was to explore the PIR in one type of interneuron in the lamprey locomotor network and its dependence on low voltage-activated (LVA) calcium channels, as well as its modulation by 5-HT and dopamine. PIR responses in commissural interneurons, mediating reciprocal inhibition and left-right alternation in the network, were significantly larger than in motoneurons.

View Article and Find Full Text PDF

The different neural control systems involved in goal-directed vertebrate locomotion are reviewed. They include not only the central pattern generator networks in the spinal cord that generate the basic locomotor synergy and the brainstem command systems for locomotion but also the control systems for steering and control of body orientation (posture) and finally the neural structures responsible for determining which motor programs should be turned on in a given instant. The role of the basal ganglia is considered in this context.

View Article and Find Full Text PDF

The slow afterhyperpolarization (sAHP) following the action potential is the main determinant of spike frequency regulation. The sAHP after single action potentials in neurons of the lamprey locomotor network is largely due to calcium-dependent K+channels (80%), activated by calcium entering the cell during the spike. The residual (20%) component becomes prominent during high level activity (50% of the sAHP).

View Article and Find Full Text PDF

The spinal network underlying locomotion in the lamprey consists of a core network of glutamatergic and glycinergic interneurons, previously studied experimentally and through mathematical modeling. We present a new and more detailed computational model of lamprey locomotor network neurons, based primarily on detailed electrophysiological measurements and incorporating new experimental findings. The model uses a Hodgkin-Huxley-like formalism and consists of 86 membrane compartments containing 12 types of ion currents.

View Article and Find Full Text PDF

A Ca(2+)-activated, non-selective cation current (I(CAN)) has been suggested to contribute to plateau potentials in lamprey reticulospinal neurons, providing the drive for locomotor initiation. Flufenamic acid (FFA) is commonly used as a blocker of I(CAN). To explore the effects of FFA on spinal locomotor pattern generation, we induced fictive locomotion in the isolated lamprey spinal cord.

View Article and Find Full Text PDF

Molecules and cells are the signalling elements in microcircuits. Recent studies have uncovered bewildering diversity in postsynaptic signalling properties in all areas of the vertebrate nervous system. Major effort is now being invested in establishing the specialized signalling properties at the cellular and molecular levels in microcircuits in specific brain regions.

View Article and Find Full Text PDF

Prions are transmissible pathogens that cause neurodegenerative diseases, although the mechanisms behind the nervous system dysfunctions are unclear. To study the effects of a prion infection on voltage-gated calcium channels, scrapie-infected gonadotropin-releasing hormone neuronal cells (ScGT1-1) in culture were depolarized by KCl and calcium responses recorded. Lower calcium responses were observed in infected compared to uninfected cells.

View Article and Find Full Text PDF

It is argued that the nervous systems of vertebrates are equipped with a "motor infrastructure," which enables them to perform the full extent of the motor repertoire characteristic of their particular species. In the human, it extends from the networks/circuits underlying locomotion and feeding to sound production in speech and arm-hand-finger coordination. Contrary to current opinion, these diverse motor patterns should be labeled as voluntary, because they can be recruited at will.

View Article and Find Full Text PDF

The isolated brainstem-spinal cord of the lamprey is used as an experimental model in the analysis of the cellular bases of vertebrate locomotor behaviour. In this article we review the neural mechanisms involved in the control of steering, intersegmental co-ordination, as well as the segmental burst generation and the sensory contribution to motor pattern generation. Within these four components of the control system for locomotion, we now have good knowledge of not only the neurones that take part and their synaptic interactions, but also the membrane properties of these neurones, including ion channel subtypes, and their contribution to motor pattern generation.

View Article and Find Full Text PDF

Single motoneurons and pairs of a presynaptic reticulospinal axon and a postsynaptic motoneuron were recorded in the isolated lamprey spinal cord, to investigate the role of calcium-dependent K(+) channels (K(Ca)) during the afterhyperpolarization following the action potential (AHP), and glutamatergic synaptic transmission on the dendritic level. The AHP consists of a fast phase due to transient K(+) channels (fAHP) and a slower phase lasting 100-200 ms (sAHP), being the main determinant of spike frequency regulation. We now present evidence that the sAHP has two components.

View Article and Find Full Text PDF

Neural networks form the basis for the generation and control of various patterns of behavior. Such networks are subjected to modulatory systems that influence their operation and, thereby, the behavior. In the lamprey locomotor network, analysis on the ion channel, synaptic, and cellular levels has given new insights into the organization of such modulatory systems.

View Article and Find Full Text PDF

The intrinsic function of the spinal network that generates locomotion can be studied in the isolated brainstem-spinal cord of the lamprey, a lower vertebrate. The motor pattern underlying locomotion can be elicited in the isolated spinal cord. The network consists of excitatory glutamatergic and inhibitory glycinergic interneurones with known connectivity.

View Article and Find Full Text PDF

The forebrain, brainstem and spinal cord contribution to the control of locomotion is reviewed in this article. The lamprey is used as an experimental model since it allows a detailed cellular analysis of the neuronal network underlying locomotion. The focus is on cellular mechanisms that are important for the pattern generation, as well as different types of pre- and postsynaptic modulation.

View Article and Find Full Text PDF

The effect of Glu1- and Lys78-plasminogen on the assembly and structure of fibrin gels was studied in purified fibrinogen-thrombin system and in plasminogen-free plasma, using turbidity, liquid permeation and three-dimensional (3D) confocal laser microscopy methods. In the purified fibrinogen system using the turbidity method, the final optical density of the fibrin gels increased with increasing concentrations of Lys-plasminogen. The fiber mass/length ratio mu increased with increasing concentrations of both Glu1- and Lys78-plasminogen, the effect of Lys78-plasminogen being much stronger.

View Article and Find Full Text PDF