Chloride intracellular ion channel (CLIC) proteins exist as both soluble and integral membrane proteins, with CLIC1 capable of shifting between two distinct structural conformations. New evidence has emerged indicating that members of the CLIC family act as moonlighting proteins, referring to the ability of a single protein to carry out multiple functions. In addition to their ion channel activity, CLIC family members possess oxidoreductase enzymatic activity and share significant structural and sequence homology, along with varying overlaps in their tissue distribution and cellular localization.
View Article and Find Full Text PDFThe novel severe acute respiratory syndrome (SARS) coronavirus, SARS-CoV-2, is responsible for the global COVID-19 pandemic. Effective interventions are urgently needed to mitigate the effects of COVID-19 and likely require multiple strategies. Egg-extracted antibody therapies are a low-cost and scalable strategy to protect at-risk individuals from SARS-CoV-2 infection.
View Article and Find Full Text PDFUnlabelled: COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity.
View Article and Find Full Text PDFAntiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases.
View Article and Find Full Text PDFThe chloride intracellular ion channel protein (CLIC) family are a unique set of ion channels that can exist as soluble and integral membrane proteins. New evidence has emerged that demonstrates CLICs' possess oxidoreductase enzymatic activity and may function as either membrane-spanning ion channels or as globular enzymes. To further characterize the enzymatic profile of members of the CLIC family and to expand our understanding of their functions, we expressed and purified recombinant CLIC1, CLIC3, and a non-functional CLIC1-Cys24A mutant using a Histidine tag, bacterial protein expression system.
View Article and Find Full Text PDFCancer is the second biggest cause of death in children in the US. With the development of chemotherapy, there has been a substantial increase in the overall survival rate in the last 30 years. However, the overall mortality rate in children with cancer remains 25%, and many survivors experience a decline in overall quality of life and long-term adverse effects caused by treatments.
View Article and Find Full Text PDFIntroduction: Orthognathic surgery, being an invasive surgical procedure, may present significant postoperative morbidities for the patient. Among the most frequently described complications is surgical site infection. The administration of prophylactic antibiotics prior to this type of procedure is a common practice, however, the cost-benefit of the use of antibiotics, the type of antibiotics, the route of administration, the dosage, and the regimen to be used have not been clearly defined and are still considered a controversial issue.
View Article and Find Full Text PDFemployment is critically important in mental health care. Unemployment worsens mental health and gaining employment can improve mental health, even for people with the most serious mental illnesses. In this editorial, we argue for a new treatment paradigm in mental health that emphasises employment, because supported employment is an evidence-based intervention that can help the majority of people with mental health disability to succeed in integrated, competitive employment.
View Article and Find Full Text PDFWorld J Gastroenterol
December 2018
Aim: To develop a screening test for celiac disease based on the coating of gold nanoparticles with a peptide sequence derived from gliadin, the protein that triggers celiac disease.
Methods: 20 nm gold nanoparticles were first coated with NeutrAvidin. A long chain Polyethylene glycol (PEG) linker containing Maleimide at the Ω-end and Biotin group at the α-end was used to ensure peptide coating to the gold nanoparticles.
J Gastroenterol
September 2017
Celiac disease has advanced from a medical rarity to a highly prevalent disorder. Patients with the disease show varying degrees of chronic inflammation within the small intestine due to an aberrant immune response to the digestion of gliadin found in wheat. As a result, cytokines and antibodies are produced in celiac patients that can be used as specific biomarkers for developing diagnostic tests.
View Article and Find Full Text PDFThe enteric disease coccidiosis, caused by the unicellular parasite Eimeria, is a major and reoccurring problem for the poultry industry. While the molecular machinery driving host cell invasion and oocyst wall formation has been well documented in Eimeria, relatively little is known about the host cell modifications which lead to acquisition of nutrients and parasite growth. In order to understand the mechanism(s) by which nutrients are acquired by developing intracellular gametocytes and oocysts, we have performed uptake experiments using polystyrene nanoparticles (NPs) of 40 nm and 100 nm in size, as model NPs typical of organic macromolecules.
View Article and Find Full Text PDFTo determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'.
View Article and Find Full Text PDFSUMMARY Apicomplexan parasites cause devastating diseases in humans and livestock. Previously we demonstrated that antibodies targeting transmissible forms of the apicomplexan parasite, Eimeria, are effective at reducing parasite shedding thus preventing the transmission of the disease. However, the mechanisms responsible have not been fully defined.
View Article and Find Full Text PDFEimeria maxima has been used as a model apicomplexan parasite to study sexual stage development and oocyst wall formation. A complete understanding of the wall's biochemical and biophysical properties is of great interest in research on all apicomplexan parasites. Purified gametocytes, zygotes and oocysts were analysed by three-dimensional confocal microscopy, and wide-field fluorescent microscopy was used to investigate the appearance and spatial organization of the 2 types of wall-forming bodies (WFBs).
View Article and Find Full Text PDFSonography (ultrasound) is used routinely to assess an infant with nonbilious projectile emesis. Fluoroscopic upper gastrointestinal (UGI) series has been the standard method to evaluate infants with bilious emesis. We use sonographic UGI routinely to assess infants with nonbilious emesis as well as infants with bilious emesis.
View Article and Find Full Text PDFMembers of the phylum Apicomplexa, which includes the species Plasmodium, Eimeria, Toxoplasma, and Babesia amongst others, are the most successful intracellular pathogens known to humankind. The widespread acquisition of antimicrobial resistance to most drugs used to date has sparked a great deal of research and commercial interest in the development of vaccines as alternative control strategies. A few antigens from the asexual and sexual stages of apicomplexan development have been identified and their genes characterised; however, the fine cellular and molecular details of the effector mechanisms crucial for parasite inhibition and stimulation of protective immunity are still not entirely understood.
View Article and Find Full Text PDFApicomplexan parasites such as Eimeria maxima possess a resilient oocyst wall that protects them upon excretion in host faeces and in the outside world, allowing them to survive between hosts. The wall is formed from the contents of specialised organelles - wall-forming bodies - found in macrogametes of the parasites. The presence of dityrosine in the oocyst wall suggests that peroxidase-catalysed dityrosine cross-linking of tyrosine-rich proteins from wall-forming bodies forms a matrix that is a crucial component of oocyst walls.
View Article and Find Full Text PDFInfluenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic.
View Article and Find Full Text PDFAmoebic gill disease can be experimentally induced by the exposure of salmonids to Neoparamoeba spp. freshly isolated from infected fish, while cultured amoebae are non-infective. Results from our previous work suggested that one key difference between infectious and non-infectious Neoparamoeba were the highly glycosylated molecules in the glycocalyx.
View Article and Find Full Text PDFEimeria species, of the Phylum Apicomplexa, cause the disease coccidiosis in poultry, resulting in severe economic losses every year. Transmission of the disease is via the faecal-oral route, and is facilitated by intensive rearing conditions in the poultry industry. Additionally, Eimeria has developed drug resistance against most anticoccidials used today, which, along with the public demand for chemical free meat, has lead to the requirement for an effective vaccine strategy.
View Article and Find Full Text PDF