Publications by authors named "Wallace Tourtellotte"

Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects.

View Article and Find Full Text PDF

Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the Ig superfamily, with various physiological roles including the induction of matrix metalloproteinases (MMPs), leukocyte activation, and tumor progression. In this study, we illustrate a novel involvement of EMMPRIN in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We found EMMPRIN levels to be upregulated on peripheral leukocytes before onset of EAE clinical signs and on infiltrating leukocytes and resident cells within the CNS in symptomatic mice.

View Article and Find Full Text PDF

Fast migrating cerebrosides (FMC) are derivatives of galactosylceramide (GalCer). The structures of the most hydrophobic FMC-5, FMC-6, and FMC-7 were determined by electrospray ionization linear ion-trap mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy complementing previous NMR spectroscopy and gas chromatography-mass spectrometry to be 3-O-acetyl-sphingosine-GalCer derivatives with galactose O-acetyl modifications. FMC-5 and FMC-6 are 3-O-acetyl-sphingosine-2,3,4,6-tetra-O-acetyl-GalCer with nonhydroxy and hydroxy-N-fatty-acids, while FMC-7 has an additional O-acetylation of the 2-hydroxy-fatty acid.

View Article and Find Full Text PDF

Mycoplasmas are the smallest of the known self-replicating organisms. They lack cell walls and are associated with numerous diseases in humans and animals. We are exploring the possibility that infection by Mycoplasma may induce the inflammatory demyelinating disease of the central nervous system (CNS) that is MS.

View Article and Find Full Text PDF

The role of iron metabolism in Alzheimer's disease (AD) is well documented. Regulation of the proteins that maintain cellular iron metabolism is mediated by two cytoplasmic RNA-binding proteins, the Iron Regulatory Proteins (IRP1 and IRP2), that function through post-transcriptional interactions with RNA stem loop structures called iron-responsive elements. As the primary mediator of iron homeostasis in neuronal cells, IRP2 is a strong candidate for polymorphisms that could impact AD pathogenesis.

View Article and Find Full Text PDF

In this study diverse areas of the autopsied brain of 12 HIV-infected patients with and without dementia were analyzed. All brain samples were obtained at autopsy through prior consent. Env C2-V5 region was PCR amplified and sequenced and compared between different brain regions within the same patient and also between patients to find changes, which can discriminate between patients with and without dementia and also identify motifs responsible for coreceptor-mediated entry of HIV into the CNS.

View Article and Find Full Text PDF

Immunoglobulin A (IgA), the predominant immunoglobulin class in mucosal secretions, has been found in the cerebrospinal fluid of patients with multiple sclerosis (MS). In this study we examined the infiltration of clonally expanded IgA plasma cells in lesions of MS brains. Sequences of complementarity-determining region 3 of IgA variable heavy chain (V(H)) genes demonstrated the clonal expansion of IgA-bearing plasma cells in MS lesions.

View Article and Find Full Text PDF

Demyelination and axonal loss have been described as the histological hallmarks of inflammatory lesions of multiple sclerosis (MS) and are the pathological correlates of persistent disability. However, the immune mechanisms underlying axonal damage in MS remain unknown. Here, we report the use of single chain-variable domain fragments (scFv) from clonally expanded cerebrospinal fluid (CSF) B cells to show the role of an anti-axon immune response in the central nervous system (CNS) in MS.

View Article and Find Full Text PDF

New criteria for the diagnosis of multiple sclerosis (MS) were published as the result of an internationally formed committee. To increase the specificity of diagnosis and to minimize the number of false diagnoses, the committee recommended the use of both clinical and paraclinical criteria, the latter involving information obtained from magnetic resonance imaging, evoked potentials, and cerebrospinal fluid (CSF) analysis. Although rigorous magnetic resonance imaging requirements were provided, the "new criteria paper" fell short in terms of guidelines as to how the CSF analysis should be performed and simply equated the IgG index with isoelectric focusing, without any justification.

View Article and Find Full Text PDF

Unlabelled: Regulated upon activation, normal T-cell expressed and secreted (RANTES) is a beta-chemokine and has been detected in brain lesions of multiple sclerosis (MS) patients. Considering its potential role in MS, we screened two functional polymorphisms in the proximal promoter region of the RANTES in MS patients versus controls.

Methods: We examined 140 postmortem brain samples from subjects with a primary diagnosis of MS, and peripheral blood samples from 216 control subjects.

View Article and Find Full Text PDF

Purpose: The interaction between chemokines and their receptors is extremely important in controlling T cell migration into sites of CNS inflammation. Because trafficking of inflammatory T cells into the central nervous system (CNS) is a key player in the pathogenesis of multiple sclerosis (MS), we investigated the possible association of CCR5 delta32 deletion in this disorder.

Methods: DNA isolated from postmortem brain tissue samples of 132 patients with MS and from blood tissue samples of 163 gender and ethnicity-matched healthy controls was used to screen for the CCR5 delta32 deletion allele.

View Article and Find Full Text PDF

AIDS dementia complex (ADC) in human immunodeficiency virus (HIV)-infected patients continues to be a problem in the era of highly active antiretroviral therapy (HAART). A better understanding of the drug resistance mutation patterns that emerge in the central nervous system (CNS) during HAART is of paramount importance as these differences in drug resistance mutations may explain underlying reasons for poor penetration of antiretroviral drugs into the CNS and suboptimal concentrations of the drugs that may reside in the brains of HIV-infected individuals during therapy. Thus, we provide a detailed analysis of HIV type 1 (HIV-1) protease and reverse transcriptase (RT) genes derived from different regions of the brains of 20 HIV-1-infected patients (5 without ADC, 2 with probable ADC, and 13 with various stages of ADC) on antiretroviral therapy.

View Article and Find Full Text PDF

In this study, we demonstrate that grossly unaffected white matter from secondary progressive multiple sclerosis (SP-MS) patients is heavily citrullinated, as compared to normal white matter from control patients. Citrullination was most pronounced at plaque interfaces and was shown to colocalize with glial fibrillary acidic protein (GFAP)-immunoreactivity using dual color immunofluorescence. In contrast, the plaques themselves weakly stained for citrullinated proteins compared to control white matter and usually contained a blood vessel with surrounding astrocytes that were positive both for citrullinated proteins and GFAP.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis.

View Article and Find Full Text PDF

The development of somatically mutated memory and plasma B cells is a consequence of T cell-dependent antigen-challenged humoral immunity. To investigate the role of B cell-mediated humoral immunity in the initiation and evolution of multiple sclerosis (MS), we analyzed Ig variable heavy chain genes of intrathecal B cells derived from patients with a first clinical manifestation suggestive of MS. Sequences of Ig variable regions showed that B cells in the cerebrospinal fluid from most of these patients were clonally expanded and carried somatic hypermutated variable heavy chain genes.

View Article and Find Full Text PDF

Inflammatory demyelinating disorders of the CNS, such as multiple sclerosis (MS), are mediated, at least in part, by various cytokines and proteases. In the present study, we investigated the expression of A disintegrin and metalloproteinase (ADAM)-17, an important sheddase for various proteins, including tumor necrosis factor-alpha (TNF-alpha), and the p75- and p55-TNF receptors, as well as ADAM-10, a protease implicated in myelin degradation, in post mortem CNS tissue samples from patients with MS, and normal brain tissue (as control) by immunohistochemistry. ADAM-10 was found to be expressed by astrocytes in all MS and control sections studied; however, in some MS sections, perivascular macrophages were determined as an additional cellular source as well.

View Article and Find Full Text PDF

Phenylethanolamine N-methyltransferase (PNMT), the terminal enzyme of the catecholamine biosynthesis pathway, catalyzes the conversion of norepinephrine (NE) to epinephrine (EPI). PNMT is a candidate gene for multiple sclerosis (MS) for two reasons. PNMT is known to map to a region identified in two genome screens for MS and it directly regulates the amounts of NE and EPI, both of which play a significant role in the modulation of the innate immune response.

View Article and Find Full Text PDF

Background: Multiple sclerosis is an inflammatory disease of the central nervous system that destroys myelin, oligodendrocytes, and axons. Since most of the lesions of multiple sclerosis are not remyelinated, enhancement of remyelination is a possible therapeutic strategy that could perhaps be achieved with the transplantation of oligodendrocyte-producing cells into the lesions. We investigated the frequency distribution and configuration of oligodendrocytes in chronic lesions of multiple sclerosis to determine whether these factors limit remyelination.

View Article and Find Full Text PDF

We studied the painful symptoms associated with human immunodeficiency virus (HIV) infection and its treatment in a group of men enrolled in a prospective longitudinal study of HIV effects on the nervous system. The most common painful illnesses reported were HIV-related headaches, herpes simplex, painful peripheral neuropathy, back pain, herpes zoster, 3'-azido-3'-deoxythymidine (AZT)-induced headaches, throat pain, and arthralgia. Painful illnesses were reported at all stages of systemic disease but were more common in the later stages of disease and in subjects who progressed to a more advanced stage during the study period.

View Article and Find Full Text PDF