The development of small molecule allosteric modulators acting at G protein-coupled receptors (GPCRs) is becoming increasingly attractive. Such compounds have advantages over traditional drugs acting at orthosteric sites on these receptors, in particular target specificity. However, the number and locations of druggable allosteric sites within most clinically relevant GPCRs are unknown.
View Article and Find Full Text PDFThe ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires treatments with rapid clinical translatability. Here we develop a multi-target and multi-ligand virtual screening method to identify FDA-approved drugs with potential activity against SARS-CoV-2 at traditional and understudied viral targets. 1,268 FDA-approved small molecule drugs were docked to 47 putative binding sites across 23 SARS-CoV-2 proteins.
View Article and Find Full Text PDFIn this study, we target the main protease (M) of the SARS-CoV-2 virus as it is a crucial enzyme for viral replication. Herein, we report three plausible allosteric sites on M that can expand structure-based drug discovery efforts for new M inhibitors. To find these sites, we used mixed-solvent molecular dynamics (MixMD) simulations, an efficient computational protocol that finds binding hotspots through mapping the surface of unbound proteins with 5% cosolvents in water.
View Article and Find Full Text PDFRegulator of G protein signaling 4 (RGS4) is an intracellular protein that binds to the G subunit ofheterotrimeric G proteins and aids in terminating G protein coupled receptor signaling. RGS4 has been implicated in pain, schizophrenia, and the control of cardiac contractility. Inhibitors of RGS4 have been developed but bind covalently to cysteine residues on the protein.
View Article and Find Full Text PDFOur systematic literature collection and annotation identified 106 chemical drugs and 31 antibodies effective against the infection of at least one human coronavirus (including SARS-CoV, SAR-CoV-2, and MERS-CoV) in vitro or in vivo in an experimental or clinical setting. A total of 163 drug protein targets were identified, and 125 biological processes involving the drug targets were significantly enriched based on a Gene Ontology (GO) enrichment analysis. The Coronavirus Infectious Disease Ontology (CIDO) was used as an ontological platform to represent the anti-coronaviral drugs, chemical compounds, drug targets, biological processes, viruses, and the relations among these entities.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are a large family of integral membrane proteins responsible for cellular signal transductions. Identification of therapeutic compounds to regulate physiological processes is an important first step of drug discovery. We proposed MAGELLAN, a novel hierarchical virtual-screening (VS) pipeline, which starts with low-resolution protein structure prediction and structure-based binding-site identification, followed by homologous GPCR detections through structure and orthosteric binding-site comparisons.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are one of the most important drug targets, accounting for ∼34% of drugs on the market. For drug discovery, accurate modeling and explanation of bioactivities of ligands is critical for the screening and optimization of hit compounds. Homologous GPCRs are more likely to interact with chemically similar ligands, and they tend to share common binding modes with ligand molecules.
View Article and Find Full Text PDFMotivation: Accurate prediction and interpretation of ligand bioactivities are essential for virtual screening and drug discovery. Unfortunately, many important drug targets lack experimental data about the ligand bioactivities; this is particularly true for G protein-coupled receptors (GPCRs), which account for the targets of about a third of drugs currently on the market. Computational approaches with the potential of precise assessment of ligand bioactivities and determination of key substructural features which determine ligand bioactivities are needed to address this issue.
View Article and Find Full Text PDFMotivation: Precise assessment of ligand bioactivities (including IC50, EC50, Ki, Kd, etc.) is essential for virtual screening and lead compound identification. However, not all ligands have experimentally determined activities.
View Article and Find Full Text PDFMotivation: G protein-coupled receptors (GPCRs) are probably the most attractive drug target membrane proteins, which constitute nearly half of drug targets in the contemporary drug discovery industry. While the majority of drug discovery studies employ existing GPCR and ligand interactions to identify new compounds, there remains a shortage of specific databases with precisely annotated GPCR-ligand associations.
Results: We have developed a new database, GLASS, which aims to provide a comprehensive, manually curated resource for experimentally validated GPCR-ligand associations.
Acetylcholinesterase (AChE) is organized into globular tetramers (G(4)) by a structural protein called proline-rich membrane anchor (PRiMA), anchoring it into the cell membrane of neurons in the brain. The assembly of AChE tetramers with PRiMA requires the presence of a C-terminal "t-peptide" in the AChE catalytic subunit (AChE(T)). The glycosylation of AChE(T) is known to be required for its proper assembly and trafficking; however, the role of PRiMA glycosylation in the oligomer assembly has not been revealed.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) is responsible for the hydrolysis of the neurotransmitter, acetylcholine, in the nervous system. The functional localization and oligomerization of AChE T variant are depending primarily on the association of their anchoring partners, either collagen tail (ColQ) or proline-rich membrane anchor (PRiMA). Complexes with ColQ represent the asymmetric forms (A(12)) in muscle, while complexes with PRiMA represent tetrameric globular forms (G(4)) mainly found in brain and muscle.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) anchors onto cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric form in vertebrate brain. The assembly of AChE tetramer with PRiMA requires the C-terminal "t-peptide" in AChE catalytic subunit (AChE(T)). Although mature AChE is well known N-glycosylated, the role of glycosylation in forming the physiologically active PRiMA-linked AChE tetramer has not been studied.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) is anchored onto cell membranes by the transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric globular form that is prominently expressed in vertebrate brain. In parallel, the PRiMA-linked tetrameric butyrylcholinesterase (BChE) is also found in the brain. A single type of AChE-BChE hybrid tetramer was formed in cell cultures by co-transfection of cDNAs encoding AChE(T) and BChE(T) with proline-rich attachment domain-containing proteins, PRiMA I, PRiMA II, or a fragment of ColQ having a C-terminal GPI addition signal (Q(N-GPI)).
View Article and Find Full Text PDFHeat shock response, an induced transcription of a set of genes in response to high temperature, occurs in all organisms. In neurons, the catalytic subunit of acetylcholinesterase (AChE(T)) interacts with proline-rich membrane anchor (PRiMA) to form a globular tetrameric form (G(4) form). In this study, we examined the effects of heat shock on the transcription and protein assembly of AChE(T) in cultured NG108-15 cells.
View Article and Find Full Text PDFIn the mammalian brain, acetylcholinesterase (AChE) is anchored in cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor). We present evidence that at least part of the PRiMA-linked AChE is integrated in membrane microdomains called rafts. A significant proportion of PRiMA-linked AChE tetramers from rat brain was recovered in raft fractions; this proportion was markedly higher at low rather than at high concentrations of cold Triton X-100.
View Article and Find Full Text PDF