Sirtuin-7 (Sirt7) is a nuclear NAD-dependent deacetylase with a broad spectrum of biological functions. Sirt7 overexpression is linked to several pathological states and enhances anticancer drug resistance, making the enzyme a promising target for the development of novel therapeutics. Despite a plethora of reported functions, the biochemical characterization of recombinant Sirt7 remains inadequate for the development of novel drug candidates.
View Article and Find Full Text PDFChromatin abnormalities are common hallmarks of cancer cells, which exhibit alterations in DNA methylation profiles that can silence tumor suppressor genes. These epigenetic patterns are partly established and maintained by UHRF1 (ubiquitin-like PHD and RING finger domain-containing protein 1), which senses existing methylation states through multiple reader domains, and reinforces the modifications through recruitment of DNA methyltransferases. Small molecule inhibitors of UHRF1 would be important tools to illuminate molecular functions, yet no compounds capable of blocking UHRF1-histone binding in the context of the full-length protein exist.
View Article and Find Full Text PDFThe protein deacetylase SIRT6 maintains cellular homeostasis through multiple pathways that include the deacetylation of histone H3 and repression of transcription. Prior work suggests that SIRT6 is associated with chromatin and can substantially reduce global levels of H3 acetylation, but how SIRT6 is able to accomplish this feat is unknown. Here, we describe an exquisitely tight interaction between SIRT6 and nucleosome core particles, in which a 2:1 enzyme:nucleosome complex assembles via asymmetric binding with distinct affinities.
View Article and Find Full Text PDFS-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation.
View Article and Find Full Text PDFEukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA.
View Article and Find Full Text PDFThe histone chaperone Chromatin Assembly Factor 1 (CAF-1) deposits tetrameric (H3/H4) histones onto newly-synthesized DNA during DNA replication. To understand the mechanism of the tri-subunit CAF-1 complex in this process, we investigated the protein-protein interactions within the CAF-1-H3/H4 architecture using biophysical and biochemical approaches. Hydrogen/deuterium exchange and chemical cross-linking coupled to mass spectrometry reveal interactions that are essential for CAF-1 function in budding yeast, and importantly indicate that the Cac1 subunit functions as a scaffold within the CAF-1-H3/H4 complex.
View Article and Find Full Text PDFIndividual posttranslational modifications (PTMs) of p53 mediate diverse p53-dependent responses; however, much less is known about the combinatorial action of adjacent modifications. Here, we describe crosstalk between the early DNA damage response mark p53K382me2 and the surrounding PTMs that modulate binding of p53 cofactors, including 53BP1 and p300. The 1.
View Article and Find Full Text PDFThe importance of tyrosine phosphorylation in normal cell physiology is well established, highlighted by the many human diseases that stem from abnormalities in protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) function. Contrary to earlier assumptions, it is now clear that both PTKs and PTPs are highly specific, non-redundant, and tightly regulated enzymes. Hematopoietic cells express particularly high numbers of PTKs and PTPs, and aberrant function of these proteins have been linked to many hematopoietic disorders.
View Article and Find Full Text PDFThe central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae.
View Article and Find Full Text PDFAnti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1.
View Article and Find Full Text PDFThe eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance.
View Article and Find Full Text PDFLymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here we studied the spatiotemporal dynamics of the LYP-CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it downmodulates TCR signaling.
View Article and Find Full Text PDFThe hematopoietic protein tyrosine phosphatase (HePTP) is implicated in the development of blood cancers through its ability to negatively regulate the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Small-molecule modulators of HePTP activity may become valuable in treating hematopoietic malignancies such as T cell acute lymphoblastic leukemia (T-ALL) and acute myelogenous leukemia (AML). Moreover, such compounds will further elucidate the regulation of MAPKs in hematopoietic cells.
View Article and Find Full Text PDFThe Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and the NMDA-type glutamate receptor are key regulators of synaptic plasticity underlying learning and memory. Direct binding of CaMKII to the NMDA receptor subunit GluN2B (formerly known as NR2B) (i) is induced by Ca(2+)/CaM but outlasts this initial Ca(2+)-stimulus, (ii) mediates CaMKII translocation to synapses, and (iii) regulates synaptic strength. CaMKII binds to GluN2B around S1303, the major CaMKII phosphorylation site on GluN2B.
View Article and Find Full Text PDFProtein tyrosine phosphatases (PTPs) have only recently become the focus of attention in the search for novel drug targets despite the fact that they play vital roles in numerous cellular processes and are implicated in many human diseases. The hematopoietic protein tyrosine phosphatase (HePTP) is often found dysregulated in preleukemic myelodysplastic syndrome (MDS), as well as in acute myelogenous leukemia (AML). Physiological substrates of HePTP include the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38.
View Article and Find Full Text PDFThe lymphoid tyrosine phosphatase (Lyp, PTPN22) is a critical negative regulator of T cell antigen receptor (TCR) signaling. A single-nucleotide polymorphism (SNP) in the ptpn22 gene correlates with the incidence of various autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Since the disease-associated allele is a more potent inhibitor of TCR signaling, specific Lyp inhibitors may become valuable in treating autoimmunity.
View Article and Find Full Text PDF