Publications by authors named "Walko D"

Negative capacitance (NC) effects in ferroelectrics can potentially break fundamental limits of power dissipation known as "Boltzmann tyranny." However, the origin of transient NC of ferroelectrics, which is attributed to two different mechanisms involving free-energy landscape and nucleation, is under intense debate. Here, we report the coexistence of transient NC and an S-shaped anomaly during the switching of ferroelectric hexagonal ferrites capacitor in an RC circuit.

View Article and Find Full Text PDF
Article Synopsis
  • Ultrafast stimuli can create stable states of matter that can't be achieved under normal conditions, highlighting the need to understand the relationship between ultrafast processes and these states.
  • The study uses advanced optical and X-ray techniques to observe how a polar vortex supercrystal forms in a specially designed material when it's excited by light, demonstrating various phases in just a few picoseconds.
  • Over time, fluctuations in the structure of the supercrystal are gradually eliminated, leading to the stable formation of a single vortex supercrystal phase, with theoretical models supporting these observations.
View Article and Find Full Text PDF

Hypervalent iron intermediates have been invoked in the catalytic cycles of many metalloproteins, and thus, it is crucial to understand how the coupling between such species and their environment can impact their chemical and physical properties in such contexts. In this work, we take advantage of the solvent kinetic isotope effect (SKIE) to gain insight into the nonradiative deactivation of electronic excited states of the aqueous ferrate(VI) ion. We observe an exceptionally large SKIE of 9.

View Article and Find Full Text PDF

Dynamical control of thermal transport at the nanoscale provides a time-domain strategy for optimizing thermal management in nanoelectronics, magnetic devices, and thermoelectric devices. However, the rate of change available for thermal switches and regulators is limited to millisecond time scales, calling for a faster modulation speed. Here, time-resolved X-ray diffraction measurements and thermal transport modeling reveal an ultrafast modulation of the interfacial thermal conductance of an FeRh/MgO heterostructure as a result of a structural phase transition driven by optical excitation.

View Article and Find Full Text PDF

Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials. One seminal example is the Einstein-de Haas effect in ferromagnets, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive.

View Article and Find Full Text PDF

Characterization of the inner-shell decay processes in molecules containing heavy elements is key to understanding x-ray damage of molecules and materials and for medical applications with Auger-electron-emitting radionuclides. The 1s hole states of heavy atoms can be produced by absorption of tunable x rays and the resulting vacancy decays characterized by recording emitted photons, electrons, and ions. The 1s hole states in heavy elements have large x-ray fluorescence yields that transfer the hole to intermediate electron shells that then decay by sequential Auger-electron transitions that increase the ion's charge state until the final state is reached.

View Article and Find Full Text PDF

MXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales.

View Article and Find Full Text PDF

Laser pump X-ray Transient Absorption (XTA) spectroscopy offers unique insights into photochemical and photophysical phenomena. X-ray Multiprobe data acquisition (XMP DAQ) is a technique that acquires XTA spectra at thousands of pump-probe time delays in a single measurement, producing highly self-consistent XTA spectral dynamics. In this work, we report two new XTA data acquisition techniques that leverage the high performance of XMP DAQ in combination with High Repetition Rate (HRR) laser excitation: HRR-XMP and Asynchronous X-ray Multiprobe (AXMP).

View Article and Find Full Text PDF

Ferrate(VI) has the potential to play a key role in future water supplies. Its salts have been suggested as "green" alternatives to current advanced oxidation and disinfection methods in water treatment, especially when combined with ultraviolet light to stimulate generation of highly oxidizing Fe(V) and Fe(IV) species. However, the nature of these intermediates, the mechanisms by which they form, and their roles in downstream oxidation reactions remain unclear.

View Article and Find Full Text PDF

The interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets.

View Article and Find Full Text PDF

Scattering of energetic charge carriers and their coupling to lattice vibrations (phonons) in dielectric materials and semiconductors are crucial processes that determine the functional limits of optoelectronics, photovoltaics, and photocatalysts. The strength of these energy exchanges is often described by the electron-phonon coupling coefficient, which is difficult to measure due to the microscopic time- and length-scales involved. In the present study, we propose an alternate means to quantify the coupling parameter along with thermal boundary resistance and electron conductivity by performing a high angular-resolution time-resolved X-ray diffraction measurement of propagating lattice deformation following laser excitation of a nanoscale, polycrystalline metal film on a semiconductor substrate.

View Article and Find Full Text PDF

SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize.

View Article and Find Full Text PDF

The Ontario Ministry of Health funded a reintegration unit to transition hospitalized patients who no longer required acute care to alternate level of care (ALC), such as long-term care. In its first year, 102 (3.5%) patients of the hospital's waiting-for-ALC population were transferred, with 37.

View Article and Find Full Text PDF

Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe_{4}. By combining transport, photoemission, diffraction, and x-ray absorption measurements, we observe that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids.

View Article and Find Full Text PDF

As a 3D topological insulator, bismuth selenide (BiSe) has potential applications for electrically and optically controllable magnetic and optoelectronic devices. Understanding the coupling with its topological phase requires studying the interactions of carriers with the lattice on time scales down to the subpicosecond regime. Here, we investigate the ultrafast carrier-induced lattice contractions and interlayer modulations in BiSe thin films by time-resolved diffraction using an X-ray free-electron laser.

View Article and Find Full Text PDF

A fundamental understanding of materials' structural dynamics, with fine spatial and temporal control, underpins future developments in electronic and quantum materials. Here, we introduce an optical transient grating pump and focused X-ray diffraction probe technique (TGXD) to examine the structural evolution of materials excited by modulated light with a precisely controlled spatial profile. This method adds spatial resolution and direct structural sensitivity to the established utility of a sinusoidal transient-grating excitation.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on understanding how charge carriers interact with the polar lattice in CsPbBr perovskites under nonequilibrium conditions, essential for developing advanced optoelectronic devices.
  • Researchers identify a specific polaronic distortion caused by electron-phonon coupling, leading to significant lattice changes when exposed to light, which they quantify with high precision.
  • By combining time-resolved and temperature-dependent X-ray studies, the researchers demonstrate that structural deformations at Br and Pb sites are linked to carrier recombination, rather than just thermal effects.
View Article and Find Full Text PDF

Microelectromechanical systems (MEMS) are miniature devices integrated into a vast range of industrial and consumer applications. Optical MEMS are developed for dynamic spatiotemporal control in lightwave manipulation and communication as modulators, switches, multiplexers, spectrometer, etc. However, they have not been shown to function similarly in sub-nm wavelength regimes, namely, with hard x-rays, as high-brilliance pulsed x-rays have proven powerful for addressing challenges in time-domain science, from energy conversion to neurobiological control.

View Article and Find Full Text PDF

The collective dynamics of topological structures are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices, and these are promising for ultrafast electric-field control of topological orders.

View Article and Find Full Text PDF

This article describes the development and testing of a novel, water-cooled, active optic mirror system (called "REAL: Resistive Element Adjustable Length") that combines cooling with applied auxiliary heating, tailored to the spatial distribution of the thermal load generated by the incident beam. This technique is theoretically capable of sub-nanometer surface figure error control even at high power density. Tests conducted in an optical metrology laboratory and at synchrotron X-ray beamlines showed the ability to maintain the mirror profile to the level needed for the next generation storage rings and FEL mirrors.

View Article and Find Full Text PDF

Controlled synthesis of nanostructure ultrathin films is critical for applications in nanoelectronics, photonics, and energy generation and storage. The paucity of structural probes that are sensitive to nanometer-thick films and also capable of in-operando conditions with high spatiotemporal resolutions limits the understanding of morphology and dynamics in ultrathin films. Similar to X-ray fluorescence holography for crystals, where holograms are formed through the interference between the reference and the object waves, we demonstrated that an ultrathin film, being an X-ray waveguide, can also generate fluorescence holograms as a result of the establishment of X-ray standing waves.

View Article and Find Full Text PDF

The full radiation from the first harmonic of a synchrotron undulator (between 5 and 12 keV) at the Advanced Photon Source is microfocused using a stack of beryllium compound refractive lenses onto a fast-moving liquid jet and overlapped with a high-repetition-rate optical laser. This micro-focused geometry is used to perform efficient nonresonant X-ray emission spectroscopy on transient species using a dispersive spectrometer geometry. The overall usable flux achieved on target is above 10 photons s at 8 keV, enabling photoexcited systems in the liquid phase to be tracked with time resolutions from tens of picoseconds to microseconds, and using the full emission spectrum, including the weak valence-to-core signal that is sensitive to chemically relevant electronic properties.

View Article and Find Full Text PDF

A multimodal imaging instrument has been developed that integrates scanning near-field optical microscopy with nanofocused synchrotron X-ray diffraction imaging. The instrument allows for the simultaneous nanoscale characterization of electronic/near-field optical properties of materials together with their crystallographic structure, facilitating the investigation of local structure-property relationships. The design, implementation and operating procedures of this instrument are reported.

View Article and Find Full Text PDF

Stimulation with ultrafast light pulses can realize and manipulate states of matter with emergent structural, electronic and magnetic phenomena. However, these non-equilibrium phases are often transient and the challenge is to stabilize them as persistent states. Here, we show that atomic-scale PbTiO/SrTiO superlattices, counterpoising strain and polarization states in alternate layers, are converted by sub-picosecond optical pulses to a supercrystal phase.

View Article and Find Full Text PDF