In the present work, we demonstrate the transmittance properties of one dimensional (1D) quasi-periodic photonic crystals that contain a superconductor material and a hyperbolic metamaterial (HMM). A HMM layer is engineered by the subwavelength undoped and doped Indium Arsenide (InAs) multilayers. Many resonance peaks with angle stability are obtained from the proposed Fibonacci sequence structure using the transfer matrix method (TMM).
View Article and Find Full Text PDFIn this research, we have a theoretical simple and highly sensitive sodium chloride (NaCl) sensor based on the excitation of Tamm plasmon resonance through a one-dimensional photonic crystal structure. The configuration of the proposed design was, [prism/gold (Au)/water cavity/silicon (Si)/calcium fluoride (CaF)/glass substrate]. The estimations are mainly investigated based on both the optical properties of the constituent materials and the transfer matrix method as well.
View Article and Find Full Text PDFThe light-slowing effect near band endpoints is frequently exploited in photonic crystals to enhance the optical transmittance. In a one-dimensional binary photonic crystal (1DPC) made of hyperbolic metamaterials (HMMs), we theoretically examined the angle-dependent omnidirectional photonic bandgap (PBG) for TM polarization. Using the transfer matrix approach, the optical characteristics of the 1DPC structure having dielectric and HMM layers were examined at the infrared range (IR).
View Article and Find Full Text PDFWe have theoretically demonstrated and explored the transmittance characteristics of a one-dimensional binary photonic crystal composed of metamaterial (MM) and nanocomposite (NC) layers. The NC layer was designed from silver nanoparticles (Ag-NPs) in a host material as Yttrium oxide (YO). Using the transfer matrix approach (TMM), the optical properties of a one-dimensional binary periodic structure having MM and NC layers in the Giga Hertz (GHz) range were examined.
View Article and Find Full Text PDFWe develop and explore a nonlinear regression modeling approach to designing subtractive color filters (SCFs) based on plasmonic metasurfaces. The approach opens up the possibility of rapidly choosing a desired optimized SCF design with high color saturation and brightness using an analytical expression. In this Letter, colors are produced by absorbing the light of specific wavelengths and reflecting the remaining spectrum with silver gap-plasmon nanoantennas deposited on a silver film.
View Article and Find Full Text PDF