Publications by authors named "Walid Messaoudi"

Surfactant-coated gas microbubbles are widely used as contrast agents in ultrasound imaging and increasingly in therapeutic applications. The response of microbubbles to ultrasound can be strongly influenced by their size and coating properties, and hence the production method. Ultrasonic emulsification (sonication) is the most commonly employed method and can generate high concentrations of microbubbles rapidly, but with a broad size distribution, and there is a risk of contamination and/or degradation of sensitive components.

View Article and Find Full Text PDF

Ultrasonic standing wave systems have previously been used for the generation of 3D constructs for a range of cell types. In the present study, we cultured cells from the human hepatoma Huh7 cell line in a Bulk Acoustic Wave field and studied their viability, their functions, and their response to the anti-cancer drug, 5 Fluorouracil (5FU). We found that cells grown in the acoustofluidic bioreactor (AFB) expressed no reduction in viability up to 6 h of exposure compared to those cultured in a conventional 2D system.

View Article and Find Full Text PDF

Bioacoustofluidics can be used to trap and levitate cells within a fluid channel, thereby facilitating scaffold-free tissue engineering in a 3D environment. In the present study, we have designed and characterised an acoustofluidic bioreactor platform, which applies acoustic forces to mechanically stimulate aggregates of human articular chondrocytes in long-term levitated culture. By varying the acoustic parameters (amplitude, frequency sweep, and sweep repetition rate), cells were stimulated by oscillatory fluid shear stresses, which were dynamically modulated at different sweep repetition rates (1-50 Hz).

View Article and Find Full Text PDF

An acoustofluidic device has been developed for concentrating vegetative bacteria in a continuous-flow format. We show that it is possible to overcome the disruptive effects of acoustic streaming which typically dominate for small target particles, and demonstrate flow rates compatible with the testing of drinking water. The device consists of a thin-reflector multi-layered resonator, in which bacteria in suspension are levitated towards a glass surface under the action of acoustic radiation forces.

View Article and Find Full Text PDF