Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).
View Article and Find Full Text PDFThe use of biostimulant (BS) holds a promising and environmental-friendly innovation to address current needs of sustainable agriculture. The aim of the present study is twofold: (i) assess the potential of durum wheat seed coating with microbial BS ('Panoramix', Koppert), a mix of spp., spp.
View Article and Find Full Text PDFDurum wheat production is seriously threatened by Fusarium head blight (FHB) attacks in Tunisia, and the seed coating by bio-agents is a great alternative for chemical disease control. This study focuses on evaluating, under field conditions, the effect of seed coating with , and their combination on (i) FHB severity, durum wheat grain yield and TKW in three crop seasons, and (ii) on physiological parameters and the carbon and nitrogen content and isotope composition in leaves and grains of durum wheat. The results indicated that the treatments were effective in reducing FHB severity by 30 to 70% and increasing grain yield with an increased rate ranging from 25 to 68%, compared to the inoculated control.
View Article and Find Full Text PDFCoating seeds with bio-control agents is a potentially effective approach to reduce the usage of pesticides and fertilizers applied and protect the natural environment. This study evaluated the effect of seed coating with , strain INAT (MT731365), on seed germination, plant growth and photosynthesis, and plant resistance against , in durum wheat under controlled conditions. Compared to control plants, seed coating with promoted the wheat growth (shoot and roots length and biomass), and photosynthesis and transpiration traits (chlorophyll, ɸPSII, rates of photosynthesis and transpiration, etc.
View Article and Find Full Text PDFCoating seeds with biostimulants is among the promising approaches in crop production to increase crop tolerance to drought stress. In this study, we evaluated the potential of coating durum wheat seeds of the cultivar 'Karim' with thyme essential oil on enhancing seed germination and seedling growth, and on plant growth promotion and induction of drought resistance. Coated seeds were pre-germinated, grown in hydroponics, and grown in pots under controlled well-watered and progressive water/nutrient stress conditions.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2015
The potential of thyme essential oil in controlling gray mold and Fusarium wilt and inducing systemic acquired resistance in tomato seedlings and tomato grown in hydroponic system was evaluated. Thyme oil highly reduced 64% of Botrytis cinerea colonization on pretreated detached leaves compared to untreated control. Also, it played a significant decrease in Fusarium wilt severity especially at7 days post treatment when it was reduced to 30.
View Article and Find Full Text PDFIn Tunisia, late blight caused by Phytophthora infestans is a serious threat to potato and tomato. The Mediterranean weather conditions can be conducive to infection in all seasons and the host crops, tomato and potato, are grown year round. Potato is planted and harvested in two to four overlapping intervals from August to June and tomato is grown both in open fields and in greenhouses.
View Article and Find Full Text PDFIncreasing crop yields to ensure food security is a major challenge. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. The forward genetic approach enables the identification of improved or novel phenotypes that can be exploited in conventional breeding programmes.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2003
We describe a novel method, agrosuppression, that addresses the need for an assay of the hypersensitive response (HR) in intact plants that is rapid and adapted to high-throughput functional screening of plant and pathogen genes. The agrosuppression assay is based on inoculation of intact plants with a mixture of Agrobacterium tumefaciens strains carrying (i) a binary plasmid with one or more candidate HR-inducing genes and (ii) a tumor-inducing (oncogenic) T-DNA. In the absence of HR induction, tumor formation is initiated, resulting in a typical crown gall phenotype.
View Article and Find Full Text PDF