Publications by authors named "Walid A M Elgaher"

Article Synopsis
  • CK2 is an important enzyme involved in cell growth and survival, making it a potential target for cancer treatments, but many existing inhibitors are not selective enough.
  • Researchers discovered a new compound, a dihydropyrido-thieno[2,3-d]pyrimidine derivative, which showed strong inhibitory activity against CK2α and was notable for its unique chemical structure.
  • The most effective compound, 10b, had an IC value of 36.7 nM and demonstrated good selectivity and cellular activity against certain cancer cell lines, outperforming existing inhibitors in terms of inducing cell death.
View Article and Find Full Text PDF

This study investigates the potential of energy-coupling factor (ECF) transporters as promising anti-infective targets to combat antimicrobial resistance (AMR). ECF transporters, a subclass of ATP-binding cassette (ABC) transporters, facilitate the uptake of B-vitamins across bacterial membranes by utilizing ATP as an energy source. Vitamins are essential cofactors for bacterial metabolism and growth, and they can either be synthesized de novo or absorbed from the environment.

View Article and Find Full Text PDF

Dual inhibitors of two key virulence factors of , the lectin LecA and the protease LasB, open up an opportunity in the current antimicrobial-resistance crisis. A molecular hybridization approach enabled the discovery of potent, selective, and non-toxic thiol-based inhibitors, which simultaneously inhibit these two major extracellular virulence factors and therefore synergistically interfere with virulence. We further demonstrated that the dimerization of these monovalent dual inhibitors under physiological conditions affords divalent inhibitors of LecA with a 200-fold increase in binding affinity.

View Article and Find Full Text PDF

The current study focused on the design of an extremely sensitive electrochemical sensor of ascorbic acid based on a mixture of NiAlO-NiO nanoparticles that, produced in a single step using the sol-gel method, on an ITO electrode. This new sensing platform is useful for the detection of ascorbic acid with a wide range of concentrations extending from the attomolar to the molar. SEM micrographs show the porous structure of the NiAlO-NiO sample, with a high specific surface area, which is beneficial for the catalytic performance of the nanocomposite.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered that 4-octyl itaconate (4-OI) can enhance the effects of an oncolytic virus, VSVΔ51, in resistant cancer cells and models, leading to better treatment outcomes.
  • The mechanism involves 4-OI suppressing antiviral immunity in cancer cells by modifying specific proteins, which suggests that combining metabolite-derived drugs with oncolytic viruses could significantly improve cancer treatment.
View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV.

View Article and Find Full Text PDF

Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply-chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin-first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural-similarity search. The resulting sustainable path to novel anti-infective, anti-inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti-infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability.

View Article and Find Full Text PDF

Even with the aid of the available methods, the configurational assignment of natural products can be a challenging task that is prone to errors, and it sometimes needs to be corrected after total synthesis or single-crystal X-ray diffraction (XRD) analysis. Herein, the absolute configuration of amidochelocardin is revised using a combination of XRD, NMR spectroscopy, experimental ECD spectra, and time-dependent density-functional theory (TDDFT)-ECD calculations. As amidochelocardin was obtained via biosynthetic engineering of chelocardin, we propose the same absolute configuration for chelocardin based on the similar biosynthetic origins of the two compounds and result of TDDFT-ECD calculations.

View Article and Find Full Text PDF

In addition to antioxidative and anti-inflammatory properties, activators of the cytoprotective nuclear factor erythroid-2-like-2 (NRF2) signaling pathway have antiviral effects, but the underlying antiviral mechanisms are incompletely understood. We evaluated the ability of the NRF2 activators 4-octyl itaconate (4OI), bardoxolone methyl (BARD), sulforaphane (SFN), and the inhibitor of exportin-1 (XPO1)-mediated nuclear export selinexor (SEL) to interfere with influenza virus A/Puerto Rico/8/1934 (H1N1) infection of human cells. All compounds reduced viral titers in supernatants from A549 cells and vascular endothelial cells in the order of efficacy SEL>4OI>BARD = SFN, which correlated with their ability to prevent nucleo-cytoplasmic export of viral nucleoprotein and the host cell protein p53.

View Article and Find Full Text PDF

Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against and during subsequent tdDCC runs.

View Article and Find Full Text PDF

The pipeline of antibiotics has been for decades on an alarmingly low level. Considering the steadily emerging antibiotic resistance, novel tools are needed for early and easy identification of effective anti-infective compounds. In Gram-negative bacteria, the uptake of anti-infectives is especially limited.

View Article and Find Full Text PDF

Chronic wounds infected with pathogens such as represent a worldwide health concern, especially in patients with a compromised immune system. As antimicrobial resistance has become an immense global problem, novel antibiotics are urgently needed. One strategy to overcome this threatening situation is the search for drugs targeting novel binding sites on essential and validated enzymes such as the bacterial RNA polymerase (RNAP).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used dynamic combinatorial chemistry (DCC) to identify new ligands for the bacterial enzyme glucosyltransferase (GTF) 180, which plays a key role in forming cariogenic dental biofilms.
  • They designed 36 acylhydrazones based on glucose and maltose to mimic substrate interactions, leading to the creation of dynamic combinatorial libraries (DCLs).
  • Analysis showed that four specific compounds increased significantly in the presence of GTF180, with initial findings suggesting potential for developing novel inhibitors despite exhibiting medium to low binding affinities.
View Article and Find Full Text PDF

Protein-protein interactions (PPIs) play an important role in numerous biological processes such as cell-cycle regulation and multiple diseases. The family of 14-3-3 proteins is an attractive target as they serve as binding partner to various proteins and are therefore capable of regulating their biological activities. Discovering small-molecule modulators, in particular stabilizers, of such complexes via traditional screening approaches is a challenging task.

View Article and Find Full Text PDF

Kinetic target-guided synthesis represents an efficient hit-identification strategy, in which the protein assembles its own inhibitors from a pool of complementary building blocks via an irreversible reaction. Herein, we pioneered an in situ Ugi reaction for the identification of novel inhibitors of a model enzyme and binders for an important drug target, namely, the aspartic protease endothiapepsin and the bacterial β-sliding clamp DnaN, respectively. Highly sensitive mass-spectrometry methods enabled monitoring of the protein-templated reaction of four complementary reaction partners, which occurred in a background-free manner for endothiapepsin or with a clear amplification of two binders in the presence of DnaN.

View Article and Find Full Text PDF

Lack of new antibiotics and increasing antimicrobial resistance are among the main concerns of healthcare communities nowadays, and these concerns necessitate the search for novel antibacterial agents. Recently, we discovered the cystobactamids-a novel natural class of antibiotics with broad-spectrum antibacterial activity. In this work, we describe 1) a concise total synthesis of cystobactamid 507, 2) the identification of the bioactive conformation using noncovalently bonded rigid analogues, and 3) the first structure-activity relationship (SAR) study for cystobactamid 507 leading to new analogues with high metabolic stability, superior topoisomerase IIA inhibition, antibacterial activity and, importantly, stability toward the resistant factor AlbD.

View Article and Find Full Text PDF

With the aim to develop novel antiviral agents against Kaposi's Sarcoma Herpesvirus (KSHV), we are targeting the latency-associated nuclear antigen (LANA). This protein plays an important role in viral genome maintenance during latent infection. LANA has the ability to tether the viral genome to the host nucleosomes and, thus, ensures latent persistence of the viral genome in the host cells.

View Article and Find Full Text PDF

To address the global challenge of emerging antimicrobial resistance, the hitherto most successful strategy to new antibiotics has been the optimization of validated natural products; most of these efforts rely on semisynthesis. Herein, we report the semisynthetic modification of amidochelocardin, an atypical tetracycline obtained via genetic engineering of the chelocardin producer strain. We report modifications at C4, C7, C10 and C11 by the application of methylation, acylation, electrophilic substitution, and oxidative C-C coupling reactions.

View Article and Find Full Text PDF

There is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric -aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a serious lung disease, commonly susceptible to Pseudomonas aeruginosa colonization. The dense mucus together with biofilm formation limit drug permeability and prevent the drug from reaching the site of action, causing treatment failure of the bacterial infection. Besides the use of antibiotics, the mucolytic agent N-acetylcysteine (NAC) is recommended to be co-administered in the treatment of CF.

View Article and Find Full Text PDF

Monolayers were formed by specific interactions between adamantylated proteins (transferrin, lysozyme) and a β-cyclodextrin (β-CD) monolayer on a gold surface. Very high stabilities could be reached by multiple interactions of 3-6 adamantyl moieties linked through triethylene glycol spacers to the protein with β-CD rings attached to the surface. Furthermore, bound proteins could be completely removed from the surface through competitive binding of an excess of free adamantane.

View Article and Find Full Text PDF

We are concerned with the development of novel anti-infectives with dual antibacterial and antiretroviral activities for MRSA/HIV-1 co-infection. To achieve this goal, we exploited for the first time the mechanistic function similarity between the bacterial RNA polymerase (RNAP) "switch region" and the viral non-nucleoside reverse transcriptase inhibitor (NNRTI) binding site. Starting from our previously discovered RNAP inhibitors, we managed to develop potent RT inhibitors effective against several resistant HIV-1 strains with maintained or enhanced RNAP inhibitory properties following a structure-based design approach.

View Article and Find Full Text PDF

Aim: Antibiotic resistance has become a major health problem. The σ(70):core interface of bacterial RNA polymerase is a promising drug target. Recently, the coiled-coil and lid-rudder-system of the β' subunit has been identified as an inhibition hot spot.

View Article and Find Full Text PDF