Publications by authors named "Wali Zaidi"

Taurine is a sulfur-containing amino acid that is widely expressed throughout the human brain, heart, retina, and muscle tissues. Taurine deficiency is associated with cardiomyopathy, renal dysfunction, abnormalities of the developing nervous system, and epilepsy which suggests a role specific to excitable tissues. Like vertebrates, invertebrates maintain high levels of taurine during embryonic and larval development, which decline during aging, indicating a potential developmental role.

View Article and Find Full Text PDF

Many neurons concurrently and/or differentially release multiple neurotransmitter substances to selectively modulate the activity of distinct postsynaptic targets within a network. However, the molecular mechanisms that produce synaptic heterogeneity by regulating the cotransmitter release characteristics of individual presynaptic terminals remain poorly defined. In particular, we know little about the regulation of neuropeptide corelease, despite the fact that they mediate synaptic transmission, plasticity and neuromodulation.

View Article and Find Full Text PDF

Our inability to accurately monitor individual neurons and their synaptic activity precludes fundamental understanding of brain function under normal and various pathological conditions. However, recent breakthroughs in micro- and nano-scale fabrication processes have advanced the development of neuro-electronic hybrid technology. Among such devices are three-dimensional and planar electrodes, offering the advantages of either high fidelity or longer-term recordings respectively.

View Article and Find Full Text PDF

Synapse formation and plasticity depend on nuclear transcription and site-specific protein targeting, but the molecular mechanisms that coordinate these steps have not been well defined. The MEN1 tumor suppressor gene, which encodes the protein menin, is known to induce synapse formation and plasticity in the CNS. This synaptogenic function has been conserved across evolution, however the underlying molecular mechanisms remain unidentified.

View Article and Find Full Text PDF

Highly coordinated and coincidental patterns of activity-dependent mechanisms ("fire together wire together") are thought to serve as inductive signals during synaptogenesis, enabling neuronal pairing between specific sub-sets of excitatory partners. However, neither the nature of activity triggers, nor the "activity signature" of long-term neuronal firing in developing/regenerating neurons have yet been fully defined. Using a highly tractable model system comprising of identified cholinergic neurons from Lymnaea, we have discovered that intrinsic trophic factors present in the Lymnaea brain-conditioned medium (CM) act as a natural trigger for activity patterns in post- but not the presynaptic neuron.

View Article and Find Full Text PDF

Proper synapse formation is pivotal for all nervous system functions. However, the precise mechanisms remain elusive. Moreover, compared with the neuromuscular junction, steps regulating the synaptogenic program at central cholinergic synapses remain poorly defined.

View Article and Find Full Text PDF

Neurotransmission is a key process of communication between neurons. Although much is known about this process and the influence it has on the function of the body, little is understood about the dynamics of signalling from structural regions of a single neuron. In this study we have fabricated and characterised a microelectrode array (MEA) which was utilised for simultaneous multi-site recordings of dopamine release from an isolated single neuron.

View Article and Find Full Text PDF

Depression is a debilitating mental disorder, and selective serotonin reuptake inhibitors (SSRIs) constitute the first-line antidepressant treatment choice for the clinical management of this illness; however, the mechanisms underlying their therapeutic actions and side effects remain poorly understood. Here, we compared the effects of two SSRIs, fluoxetine and citalopram, on synaptic connectivity and the efficacy of cholinergic synaptic transmission between identified presynaptic and postsynaptic neurons from the mollusc Lymnaea. The in vitro paired cells were exposed to clinically relevant concentrations of the two SSRIs under chronic and acute experimental conditions, and the incidence of synapse formation and the efficacy of synaptic transmission were tested electrophysiologically and with fluorescent Ca(2+) imaging.

View Article and Find Full Text PDF

Current treatment regimes for a variety of mental disorders involve various selective serotonin reuptake inhibitors such as Fluoxetine (Prozac). Although these drugs may 'manage' the patient better, there has not been a significant change in the treatment paradigm over the years and neither have the outcomes improved. There is also considerable debate as to the effectiveness of various selective serotonin reuptake inhibitors and their potential side-effects on neuronal architecture and function.

View Article and Find Full Text PDF