The conversion of tropical rainforest to agricultural systems such as oil palm alters biodiversity across a large range of interacting taxa and trophic levels. Yet, it remains unclear how direct and cascading effects of land-use change simultaneously drive ecological shifts. Combining data from a multi-taxon research initiative in Sumatra, Indonesia, we show that direct and cascading land-use effects alter biomass and species richness of taxa across trophic levels ranging from microorganisms to birds.
View Article and Find Full Text PDFSmallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa.
View Article and Find Full Text PDFRapid land-use change in the tropics causes dramatic losses in biodiversity and associated functions. In Sumatra, Indonesia, lowland rainforest has mainly been transformed by smallholders into oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) monocultures, interspersed with jungle rubber (rubber agroforests) and a few forest remnants. In two regions of the Jambi province, we conducted point counts in 32 plots of four different land-use types (lowland rainforest, jungle rubber, rubber plantation and oil palm plantation) as well as in 16 nearby homegardens, representing a small-scale, traditional agricultural system.
View Article and Find Full Text PDF