Surface-enhanced Raman scattering (SERS) remains a significant area of research since it's discovery 50 years ago. The surface-based technique has been used in a wide variety of fields, most prominently in chemical detection, cellular imaging and medical diagnostics, offering high sensitivity and specificity when probing and quantifying a chosen analyte or monitoring nanoparticle uptake and accumulation. However, despite its promise, SERS is mostly confined to academic laboratories and is not recognised as a gold standard analytical technique.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is a significant global health threat concern, necessitating healthcare practitioners to accurately prescribe the most effective antimicrobial agents with correct doses to combat resistant infections. This is necessary to improve the therapeutic outcomes for patients and prevent further increase in AMR. Consequently, there is an urgent need to implement rapid and sensitive clinical diagnostic methods to identify resistant pathogenic strains and monitor the efficacy of antimicrobials.
View Article and Find Full Text PDFFive carbapenemase enzymes, coined the 'big five', have been identified as the biggest threat to worldwide antibiotic resistance based on their broad substrate affinity and global prevalence. Here we show the development of a molecular detection method for the gene sequences from the five carbapenemases utilising the isothermal amplification method of recombinase polymerase amplification (RPA). We demonstrate the successful detection of each of the big five carbapenemase genes with femtomolar detection limits using a spatially separated multiplex amplification strategy.
View Article and Find Full Text PDFAntibiotic resistant bacteria constitute a global health threat. It is essential for healthcare professionals to prescribe the correct dose of an effective antibiotic to mitigate the bacterial infection in a timely manner to improve the therapeutic outcomes to the patient and prevent the dissemination of antibiotic resistance. To achieve this, there is a need to implement a rapid and ultra-sensitive clinical diagnosis to identify resistant bacterial strains and monitor the effect of antibiotics.
View Article and Find Full Text PDFWe present a sensitive label-free surface enhanced Raman spectroscopy (SERS) method for the discrimination between the recombinant and endogenous human Erythropoietin (EPO) isoforms. The proposed methodology comprises a lectin-functionalised extractor chip for the extraction of the recombinant human EPO (rhuEPO) and the endogenous EPO (enEPO) from blood plasma. The disulfide bond molecular structure of the purified isoforms was modified to chemisorb the biomolecules onto a SERS substrate in a unified orientation, thus maximizing the reproducibility and sensitivity of the SERS measurements.
View Article and Find Full Text PDFClostridium difficile (C. diff) infection is one of the most contagious diseases associated with high morbidity and mortality rates in hospitalised patients. Accurate diagnosis can slow its spread by determining the most effective treatment.
View Article and Find Full Text PDFThe molecular structure of many proteins contains disulfide bonds between their cysteine residues. In this work we demonstrate the utilization of the disulfide bond structure of proteins for their label-free determination by surface-enhanced Raman spectroscopy (SERS). The new approach for label-free SERS detection of proteins is demonstrated for human insulin.
View Article and Find Full Text PDFThe detection of protein biomarkers for the clinical diagnosis of diseases requires selective and sensitive methodologies and biosensors that can be easily used at pathology laboratories and points of care. An ideal methodology would be able to conduct multimode screening of low and high concentrations of proteins in biological fluids using recyclable platforms. In this work, we demonstrate a novel nanosensing methodology for the dual detection of cystatin C (CST-C), as a protein biomarker model, in blood plasma by surface-enhanced Raman spectroscopy and electrochemistry.
View Article and Find Full Text PDFA label free electrochemical detection method for the rapid detection of recombinant human erythropoietin (rhuEPO) has been developed. In this method, we modified the rhuEPO structure for its direct sensing without using a complex signal amplification strategy. The protein was selectively extracted from blood plasma sample using target-specific magnetic beads.
View Article and Find Full Text PDFTwo specific, sensitive, and precise stability-indicating chromatographic methods were developed, optimized, and validated for the determination of Azintamide (AZ) in the presence of its degradation product. The first method was TLC combined with the densitometric determination of the separated bands. Separation was achieved using silica gel 60 F254 TLC plates and chloroform-acetone-glacial acetic acid (7.
View Article and Find Full Text PDFA highly sensitive nanosensing method for the combined selective capture and SERS detection of Microcystin-LR (MC-LR) in blood plasma has been developed. The new method utilizes gold coated magnetic nanoparticles that are functionalized with anti MC-LR antibody Fab' fragments for the selective capture of MC-LR from aqueous media and blood plasma. Using an oriented immobilization approach, the Fab' fragments are covalently attached to gold surface to form a monolayer with high capture efficiency towards the toxin.
View Article and Find Full Text PDFSofosbuvir metabolite, 2'-deoxy-2'-fluoro-2'-C-methyluridine (PSI-6206) was studied for the first time by surface enhanced Raman spectroscopy (SERS) using the paper-based SERS substrate. The quantification limit of PSI-6206 by SERS was found to be 13ngL (R value=0.959, RSD=5.
View Article and Find Full Text PDF