Publications by authors named "Waled Shihata"

Article Synopsis
  • The study investigates how angiotensin II treatment affects the gut microbiome using a large cohort of 303 male and female mice, addressing the limitations of previous smaller studies.
  • The analysis revealed that angiotensin II significantly influenced the diversity and composition of the microbiome, but other factors like diet, age, and sampling site had a much greater impact.
  • The findings highlight the importance of considering various experimental factors when studying microbiome changes related to hypertension, as angiotensin II's effects were modest compared to these factors.
View Article and Find Full Text PDF

Objectives: The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis.

View Article and Find Full Text PDF

Background: Adrenaline is routinely administered during cardiac arrest resuscitation. Using a novel murine model of cardiac arrest, this study evaluates the effects of adrenaline use on survival and end-organ injury.

Methods: A total of 58 mice, including cardiac arrest (CA) and sham (SHAM) groups received intravenous potassium chloride either as a bolus (CA) or slow infusion (SHAM), inducing ECG-confirmed asystole (in CA only) for 4-minutes prior to intravenous adrenaline (+ADR;250 ul,32 ug/ml) or saline (-ADR;250 ul) and manual chest compressions (300 BPM) for 4-minutes.

View Article and Find Full Text PDF

We have shown that systemic and cardiac sympathetic activation is present in heart failure with preserved ejection fraction (HFpEF) patients. Conversely, whereas systemic inflammatory activation was also detected in HFpEF, we did not detect local myocardial release of inflammatory cytokines. Activation of the sympathetic system correlated with both hemodynamic and demographic factors that characteristically cluster together in HFpEF.

View Article and Find Full Text PDF

Metabolic Syndrome (MetS) is a complex and multifactorial condition often characterised by obesity, hypertension, hyperlipidaemia, insulin resistance, glucose intolerance and fasting hyperglycaemia. Collectively, MetS can increase the risk of atherosclerotic-cardiovascular disease, which is the leading cause of death worldwide. However, no animal model currently exists to study MetS in the context of atherosclerosis.

View Article and Find Full Text PDF

The aetiology and progression of hypertension involves various endogenous systems, such as the renin angiotensin system, the sympathetic nervous system, and endothelial dysfunction. Recent data suggest that vascular inflammation may also play a key role in the pathogenesis of hypertension. This study sought to determine whether high intraluminal pressure results in vascular inflammation.

View Article and Find Full Text PDF

Objectives: Rheumatoid arthritis (RA), an inflammatory joint disorder, independently increases the risk of cardiovascular disease (CVD). IL-1β contributes to both RA and CVD. We hypothesised that inhibiting IL-1 signalling with the IL-1R antagonist, anakinra, would dampen inflammation and promote resolution of atherosclerosis in arthritic mice.

View Article and Find Full Text PDF

Background: High blood pressure (BP) continues to be a major, poorly controlled but modifiable risk factor for cardiovascular death. Among key Western lifestyle factors, a diet poor in fiber is associated with prevalence of high BP. The impact of lack of prebiotic fiber and the associated mechanisms that lead to higher BP are unknown.

View Article and Find Full Text PDF

Monocytes in humans consist of 3 subsets; CD14CD16 (classical), CD14CD16 (intermediate) and CD14CD16 (non-classical), which exhibit distinct and heterogeneous responses to activation. During acute inflammation CD14CD16 monocytes are significantly elevated and migrate to the sites of injury via the adhesion cascade. The field of immunometabolism has begun to elucidate the importance of the engagement of specific metabolic pathways in immune cell function.

View Article and Find Full Text PDF

Over the past decade, the immune system has emerged as an important component in the aetiology of hypertension. There has been a blooming interest in the contribution of the gut microbiota, the microbes that inhabit our small and large intestine, to blood pressure (BP) regulation. The gastrointestinal tract houses the largest number of immune cells in our body, thus, it is no surprise that its microbiota plays an important functional role in the appropriate development of the immune system through a co-ordinated sequence of events leading to immune tolerance of commensal bacteria.

View Article and Find Full Text PDF

Elevated serum amyloid A (SAA) levels may promote endothelial dysfunction, which is linked to cardiovascular and renal pathologies. We investigated the effect of SAA on vascular and renal function in apolipoprotein E-deficient (ApoE) mice. Male ApoE mice received vehicle (control), low-level lipopolysaccharide (LPS), or recombinant human SAA by .

View Article and Find Full Text PDF

The acute phase protein serum amyloid A (SAA) is associated with endothelial dysfunction and early-stage atherogenesis. Stimulation of vascular cells with SAA increases gene expression of pro-inflammation cytokines and tissue factor (TF). Activation of the transcription factor, nuclear factor kappa-B (NFκB), may be central to SAA-mediated endothelial cell inflammation, dysfunction and pro-thrombotic responses, while targeting NFκB with a pharmacologic inhibitor, BAY11-7082, may mitigate SAA activity.

View Article and Find Full Text PDF

Hypertension is a major, independent risk factor for atherosclerotic cardiovascular disease. However, this pathology can arise through multiple pathways, which could influence vascular disease through distinct mechanisms. An overactive sympathetic nervous system is a dominant pathway that can precipitate in elevated blood pressure.

View Article and Find Full Text PDF

Despite its well-known antithrombotic properties, the effect of aspirin on blood pressure (BP) and hypertension pathology is unclear. The hugely varying doses used clinically have contributed to this confusion, with high-dose aspirin still commonly used due to concerns about the efficacy of low-dose aspirin. Because prostaglandins have been shown to both promote and inhibit T-cell activation, we also explored the immunomodulatory properties of aspirin in hypertension.

View Article and Find Full Text PDF

Aim: Rheumatoid arthritis (RA) is associated with an approximately two-fold elevated risk of cardiovascular (CV)-related mortality. Patients with RA present with systemic inflammation including raised circulating myeloid cells, but fail to display traditional CV risk-factors, particularly dyslipidaemia. We aimed to explore if increased circulating myeloid cells is associated with impaired atherosclerotic lesion regression or altered progression in RA.

View Article and Find Full Text PDF

Fibrosis is a process of dysfunctional wound repair, described by a failure of tissue regeneration and excessive deposition of extracellular matrix, resulting in tissue scarring and subsequent organ deterioration. There are a broad range of stimuli that may trigger, and exacerbate the process of fibrosis, which can contribute to the growing rates of morbidity and mortality. Whilst the process of fibrosis is widely described and understood, there are no current standard treatments that can reduce or reverse the process effectively, likely due to the continuing knowledge gaps surrounding the cellular mechanisms involved.

View Article and Find Full Text PDF

Vascular inflammation and disease progression, such as atherosclerosis, are in part a consequence of haemodynamic forces generated by changes in blood flow. The haemodynamic forces, such as shear stress or stretch, interact with vascular endothelial cells, which transduce the mechanical stimuli into biochemical signals via mechanosensors, which can induce an upregulation in pathways involved in inflammatory signaling. However, it is unclear how these mechanosensors respond to shear stress and most significantly what cellular mechanisms are involved in sensing the haemodynamic stimuli.

View Article and Find Full Text PDF

Nitroxyl anion (HNO) donors are currently being assessed for their therapeutic utility in several cardiovascular disorders including heart failure. Here, we examine their effect on factors that precede atherosclerosis including endothelial cell and monocyte activation, leucocyte adhesion to the endothelium and macrophage polarization. Similar to the NO donor glyceryl trinitrate (GTN), the HNO donors Angeli's salt (AS) and isopropylamine NONOate (IPA/NO) decreased leucocyte adhesion to activated human umbilical vein endothelial cells (HUVECs) and mouse isolated aorta.

View Article and Find Full Text PDF

Background And Purpose: Angiotensin AT2 receptors are upregulated in disease states such as atherosclerosis and blockade of the AT2 receptors exacerbates plaque formation. Direct stimulation of these receptors is anti-atherogenic but the mechanisms and pathways involved remain unknown. We examined the effect of direct AT2 receptor stimulation with Compound 21 (C21) on the leukocyte adhesion cascade in vitro, right through to plaque formation in vivo.

View Article and Find Full Text PDF