bacteria are enriched on poly(ethylene terephthalate) (PET) microplastics in wastewaters and urban rivers, but the PET-degrading mechanisms remain unclear. Here, we investigated these mechanisms with KF-1, a wastewater isolate, by combining microscopy, spectroscopy, proteomics, protein modeling, and genetic engineering. Compared to minor dents on PET films, scanning electron microscopy revealed significant fragmentation of PET pellets, resulting in a 3.
View Article and Find Full Text PDFMicrobial organic matter turnover is an important contributor to the terrestrial carbon dioxide (CO) budget. Partitioning of organic carbons into biomass relative to CO efflux, termed carbon-use efficiency (CUE), is widely used to characterize organic carbon cycling by soil microorganisms. Recent studies challenge proposals of CUE dependence on the oxidation state of the substrate carbon and implicate instead metabolic strategies.
View Article and Find Full Text PDFMicrobial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes.
View Article and Find Full Text PDFArchaea adjust the number of cyclopentane rings in their glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids as a homeostatic response to environmental stressors such as temperature, pH, and energy availability shifts. However, archaeal expression patterns that correspond with changes in GDGT composition are less understood. Here we characterize the acid and cold stress responses of the thermoacidophilic crenarchaeon REY15A using growth rates, core GDGT lipid profiles, transcriptomics and proteomics.
View Article and Find Full Text PDFMicrobial activity in Arctic soils controls the cycling of significant stores of organic carbon and nutrients. We studied processes in Alaskan soils using original metaproteomic methods in order to relate important heterotrophic functions to microbial taxa and to understand the microbial response to Arctic greening. Major bacterial groups show strong metabolic specialization in organic topsoils.
View Article and Find Full Text PDFMarine picocyanobacteria and , the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin.
View Article and Find Full Text PDFModern microbial mats are potential analogues for Proterozoic ecosystems, yet only a few studies have characterized mats under low-oxygen conditions that are relevant to Proterozoic environments. Here, we use protein-stable isotope fingerprinting (P-SIF) to determine the protein carbon isotope (δC) values of autotrophic, heterotrophic, and mixotrophic organisms in a benthic microbial mat from the low-oxygen Middle Island Sinkhole, Lake Huron, USA (MIS). We also measure the δC values of the sugar moieties of exopolysaccharides (EPS) within the mat to explore the relationships between cyanobacterial exudates and heterotrophic anabolic carbon uptake.
View Article and Find Full Text PDFCritical to a sustainable energy future are microbial platforms that can process aromatic carbons from the largely untapped reservoir of lignin and plastic feedstocks. Comamonas species present promising bacterial candidates for such platforms because they can use a range of natural and xenobiotic aromatic compounds and often possess innate genetic constraints that avoid competition with sugars. However, the metabolic reactions of these species are underexplored, and the regulatory mechanisms are unknown.
View Article and Find Full Text PDFMicrobial growth in many environments is limited by nitrogen availability, yet there is limited understanding of how complex communities compete for and allocate this resource. Here we develop a broadly applicable approach to track biosynthetic incorporation of N-labelled nitrogen substrates into microbial community proteomes, enabling quantification of protein turnover and N allocation to specific cellular functions in individual taxa. Application to oligotrophic ocean surface water identifies taxa-specific substrate preferences and a distinct subset of protein functions undergoing active biosynthesis.
View Article and Find Full Text PDFDsrC is a key protein in dissimilatory sulfur metabolism, where it works as co-substrate of the dissimilatory sulfite reductase DsrAB. DsrC has two conserved cysteines in a C-terminal arm that are converted to a trisulfide upon reduction of sulfite. In sulfate-reducing bacteria, DsrC is essential and previous works suggested additional functions beyond sulfite reduction.
View Article and Find Full Text PDFPhotoheterotrophy is a widespread mode of microbial metabolism, notably in the oligotrophic surface ocean, where microbes experience chronic nutrient limitation. One especially widespread form of photoheterotrophy is based on proteorhodopsin (PR), which uses light to generate proton motive force that can drive ATP synthesis, flagellar movement, or nutrient uptake. To clarify the physiological benefits conferred by PR under nutrient stress conditions, we quantified protein-level gene expression of Vibrio campbellii CAIM 519 under both carbon and nitrogen limitation and under both light and dark conditions.
View Article and Find Full Text PDFGluconeogenic carbon metabolism is not well understood, especially within the context of flux partitioning between energy generation and biomass production, despite the importance of gluconeogenic carbon substrates in natural and engineered carbon processing. Here, using multiple omics approaches, we elucidate the metabolic mechanisms that facilitate gluconeogenic fast-growth phenotypes in Pseudomonas putida and Comamonas testosteroni, two species with distinct metabolic networks. In contrast to the genetic constraint of , which lacks the enzymes required for both sugar uptake and a complete oxidative pentose phosphate (PP) pathway, sugar metabolism in P.
View Article and Find Full Text PDFBiological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)-only nitrogenase metalloenzymes. Studies with purified enzymes have found that the 'alternative' V- and Fe-nitrogenases generally reduce N more slowly and produce more byproduct H than the Mo-nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotroph Rhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2019
The building blocks of a virus derived from de novo biosynthesis during infection and/or catabolism of preexisting host cell biomass, and the relative contribution of these 2 sources has important consequences for understanding viral biogeochemistry. We determined the uptake of extracellular nitrogen (N) and its biosynthetic incorporation into both virus and host proteins using an isotope-labeling proteomics approach in a model marine cyanobacterium WH8102 infected by a lytic cyanophage S-SM1. By supplying dissolved N as N postinfection, we found that proteins in progeny phage particles were composed of up to 41% extracellularly derived N, while proteins of the infected host cell showed almost no isotope incorporation, demonstrating that de novo amino acid synthesis continues during infection and contributes specifically and substantially to phage replication.
View Article and Find Full Text PDFDissimilatory sulfate reduction is a microbial energy metabolism that can produce sulfur isotopic fractionations over a large range in magnitude. Calibrating sulfur isotopic fractionation in laboratory experiments allows for better interpretations of sulfur isotopes in modern sediments and ancient sedimentary rocks. The proteins involved in sulfate reduction are expressed in response to environmental conditions, and are collectively responsible for the net isotopic fractionation between sulfate and sulfide.
View Article and Find Full Text PDFIn marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.
View Article and Find Full Text PDFDe novo sequencing offers an alternative to database search methods for peptide identification from mass spectra. Since it does not rely on a predetermined database of expected or potential sequences in the sample, de novo sequencing is particularly appropriate for samples lacking a well-defined or comprehensive reference database. However, the low accuracy of many de novo sequence predictions has prevented the widespread use of the variety of sequencing tools currently available.
View Article and Find Full Text PDFDissolved organic matter (DOM) plays a central role in the microbial ecology and biogeochemistry of aquatic environments, yet little is known about how the mechanism of DOM release from its ultimate source, primary producer biomass, affects the molecular composition of the inputs to the dissolved pool. Here we used a model marine phytoplankton, the picocyanobacterium Synechococcus WH7803, to compare the composition of DOM released by three mechanisms: exudation, mechanical cell lysis and infection by the lytic phage S-SM1. A broad, untargeted analytical approach reveals the complexity of this freshly sourced DOM, and comparative analysis between DOM produced by the different mechanisms suggests that exudation and viral lysis are sources of unsaturated, oxygen-rich and possibly novel biomolecules.
View Article and Find Full Text PDFWe present an analytical strategy, dimethylation-deuteration and oxygen-exchange IPTL (diDO-IPTL), for high-precision, broad-coverage quantitative proteomics. The diDO-IPTL approach combines two advances in isobaric peptide terminal labeling (IPTL) methodology: first, a one-pot chemical labeling strategy for attaching isotopic tags to both the N- and C-termini of tryptic peptides, and second, a search engine (based on the Morpheus algorithm) optimized for identification and quantification of twinned peaks from peptide fragment ions in MS spectra. The diDO-IPTL labeling chemistry uses only high-purity, relatively inexpensive isotopic reagents (O water and deuterated formaldehyde) and requires no postlabeling cleanup or isotopic impurity corrections.
View Article and Find Full Text PDFHigh translational fidelity is commonly considered a requirement for optimal cellular health and protein function. However, recent findings have shown that inducible mistranslation specifically with methionine engendered at the tRNA charging level occurs in mammalian cells, yeast and archaea, yet it was unknown whether bacteria were capable of mounting a similar response. Here, we demonstrate that Escherichia coli misacylates non-methionyl-tRNAs with methionine in response to anaerobiosis and antibiotic exposure via the methionyl-tRNA synthetase (MetRS).
View Article and Find Full Text PDF