Vascular adhesion protein-1 (VAP-1), also known as plasma amine oxidase or semicarbazide-sensitive amine oxidase, is an enzyme that degrades primary amines to aldehydes with the formation of hydrogen peroxide and ammonia. Among others, it plays a role in inflammatory processes as it can mediate the migration of leukocytes from the blood to the inflamed tissue. We prepared a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkyl-substituted glycine amides and related compounds and tested them for inhibition of purified bovine plasma VAP-1.
View Article and Find Full Text PDFThe serine hydrolases cytosolic phospholipase Aα (cPLAα) and fatty acid amide hydrolase (FAAH) are interesting targets for the development of new anti-inflammatory and analgesic drugs. Structural modifications of a potent dual inhibitor with a propan-2-one substituted tetrazolylpropionic acid moiety led to compounds with also nanomolar activity against both enzymes but better physicochemical properties. The structure-activity relationships showed that the variations had partially divergent effects on the inhibitory activity of the compounds towards cPLAα and FAAH reflecting differences in the binding mode to the enzymes.
View Article and Find Full Text PDFCytosolic phospholipase Aα (cPLAα), the key enzyme of the arachidonic acid cascade, is considered to be an interesting target for the development of new anti-inflammatory drugs. Potent inhibitors of the enzyme include indole-5-carboxylic acids with propan-2-one residues in position 1 of the indole. Previously, it was found that central pharmacophoric elements of these compounds are their ketone and carboxylic acid groups, which unfortunately are subject to pronounced metabolism by carbonyl reductases and glucuronosyltransferases, respectively.
View Article and Find Full Text PDFIndole-5-carboxylic acids with 3-aryloxy-2‑oxopropyl residues in position 1 have been shown to be potent inhibitors of cytosolic phospholipase Aα (cPLAα), an enzyme involved in the formation of pro-inflammatory lipid mediators. Unfortunately, in animal experiments, only very low plasma concentrations could be achieved after peroral administration of this type of compound. Since insufficient metabolic stability was suspected as the cause, structural modifications were made to optimize this property.
View Article and Find Full Text PDF1,2-Diacylglycerol lipases (DAGLs) are the most important enzymes for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), and their role in various pathophysiological conditions is currently under investigation. We synthesized a new 1,2-diacylglycerol substrate for these enzymes with a fluorogenic 4-(pyren-1-yl)butanoyl residue in sn-2 position. Using the fluorescent substrate, we measured DAGL activity in rat liver S9 fraction and brain microsomes.
View Article and Find Full Text PDFAmine oxidase copper containing 3 (AOC3), also known as plasma amine oxidase, semicarbazide-sensitive amine oxidase, or vascular adhesion protein-1, catalyzes the oxidative deamination of primary amines to aldehydes using copper and a quinone as cofactors. Because it is involved in the transmigration of inflammatory cells through blood vessels into tissues, AOC3 is thought to play an important role in inflammatory diseases. Therefore, inhibitors of this enzyme could lead to new therapeutics for the treatment of inflammation-related diseases.
View Article and Find Full Text PDFA series of hexafluoroisopropyl carbamates with indolylalkyl- and azaindolylalkyl-substituents at the carbamate nitrogen was synthesized and evaluated for inhibition of the endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The synthesized derivatives with butyl to heptyl spacers between the heteroaryl and the carbamate moiety were inhibitors of both enzymes. For investigated compounds in which the alkyl chain was partially incorporated into a piperidine ring, different results were obtained.
View Article and Find Full Text PDFA series of aryl -[ω-(6-fluoroindol-1-yl)alkyl]carbamates with alkyl spacers of varying lengths between the indole and the carbamate group and with differently substituted aryl moieties at the carbamate oxygen were synthesized and tested for inhibition of the pharmacologically interesting serine hydrolases fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), butyrylcholinesterase (BuChE), and acetylcholinesterase (AChE). Furthermore, the chemical stability in an aqueous solution and the metabolic stability toward esterases in porcine liver homogenate and porcine blood plasma were determined. While most of the synthesized derivatives were potent inhibitors of FAAH, a considerable inhibition of MAGL and BuChE was elicited only by compounds with a high carbamate reactivity, as evidenced by a significant hydrolysis of these compounds in an aqueous solution.
View Article and Find Full Text PDFA series of derivatives of 1-(4-octylphenoxy)-3-(2H-tetrazol-2-yl)propan-2-one (3) and 1-(4-octylphenoxy)-3-(1H-tetrazol-1-yl)propan-2-one (4) was synthesized and tested for fatty acid amide hydrolase (FAAH) inhibitory potency and phase I metabolic stability. Introduction of certain substituents like 4-chlorophenyl, 4-methoxycarbonylphenyl and carboxyl in position 5 of the tetrazole ring of 3 led to a significant increase of the metabolic stability of the scissile ketone pharmacophore, while the high activity towards FAAH was not affected markedly. In contrast, substituents in position 5 of the heterocyclic system of 4 did not have a considerable impact on the undesired ketone reduction.
View Article and Find Full Text PDFA series of phenyl 4-[(indol-1-yl)alkyl]piperidine carbamates was synthesized and tested for inhibition of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) and for metabolic stability in rat liver S9 fractions and porcine blood plasma. Structure-activity relationship studies revealed that variation of the length of the alkyl spacer connecting the indole and the piperidine heterocycle, introduction of substituents into the indole ring, replacement of the piperidine by a piperazine scaffold as well as opening of the piperidine ring system affect activity significantly. The metabolic stability of this compound class proved to be significantly higher than that of corresponding phenyl -(indol-1-ylalkyl)carbamates.
View Article and Find Full Text PDFThe serine hydrolase fatty acid amide hydrolase (FAAH) catalyzes the degradation of the endocannabinoid anandamide, which possesses analgesic and anti-inflammatory effects. A new series of 1-heteroarylpropan-2-ones was synthesized and evaluated for FAAH inhibition. Structure-activity relationship studies revealed that 1H-benzotriazol-1-yl, 1H-7-azabenzotriazol-1-yl, 1H-tetrazol-1-yl and 2H-tetrazol-2-yl substituents have the highest impact on inhibitory potency.
View Article and Find Full Text PDFCytosolic phospholipase Aα (cPLAα) is a key enzyme in the biosynthesis of pro-inflammatory lipid mediators and therefore represents an attractive target for the development of new anti-inflammatory drugs. Recently, we have found that 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (4) is a potent inhibitor of the enzyme. In this work, we evaluate the effect of butanoyl- and hexanoyl-substituents in position 3 of the indole scaffold of this compound bearing terminal groups of varying polarity.
View Article and Find Full Text PDFIndazole-5-carboxylic acids with 3-aryloxy-2-oxopropyl residues in position 1 were previously reported to be potent dual inhibitors of cytosolic phospholipase Aα (cPLAα) and fatty acid amide hydrolase (FAAH). In continuation of our structure-activity studies on cPLAα and FAAH inhibitors, a number of derivatives of these substances characterized by bioisosteric replacement of the carboxylic acid functionality by inverse amides, sulfonylamides, carbamates and ureas were prepared. The biological evaluation of the obtained compounds showed that the carboxylic acid functionality of the lead compounds is of special importance for a pronounced inhibition of cPLAα and FAAH.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) is a serine hydrolase that terminates the analgesic and anti-inflammatory effects of endocannabinoids such as anandamide. Herein, structure-activity relationship studies on a new series of aryl N-(ω-imidazolyl- and ω-tetrazolylalkyl)carbamate inhibitors of FAAH were investigated. As one result, a pronounced increase in inhibitory potency was observed if a phenyl residue attached to the carbamate oxygen atom was replaced by a pyridin-3-yl moiety.
View Article and Find Full Text PDFCytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are serine hydrolases. cPLA2α is involved in the generation of pro-inflammatory lipid mediators, FAAH terminates the anti-inflammatory effects of endocannabinoids. Therefore, inhibitors of these enzymes may represent new drug candidates for the treatment of inflammation.
View Article and Find Full Text PDFCytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes, which have emerged as attractive targets for the development of analgesic and anti-inflammatory drugs. We recently reported that certain 3-phenoxy-substituted 1-heteroarylpropan-2-ones are inhibitors of cPLA2α and/or FAAH. Starting from 1-[2-oxo-3-(4-phenoxyphenoxy)propyl]indole-5-carboxylic acid (3) and 1-(1H-benzotriazol-1-yl)-3-(4-phenoxyphenoxy)propan-2-one (4), the effect of the replacement of the oxygen in position 3 of the propan-2-one scaffold by sulfur and nitrogen containing moieties on inhibition of cPLA2α and fatty acid amide hydrolase as well as on metabolic stability in rat liver S9 fractions was investigated.
View Article and Find Full Text PDFBiopharm Drug Dispos
September 2015
Recently, it was found that the carbonyl group of 1-[3-(4-phenoxyphenoxy)-2-oxopropyl]indole-5-carboxylic acid (5), an inhibitor of the pro-inflammatory enzyme cytosolic phospholipase A α, is easily reduced by rat liver S9 fractions in vitro. Determination of the inhibitory potency of certain putative inhibitors of carbonyl reducing enzymes on the transformation of the ketone derivative 5 to its alcohol 6 by recombinant microsomal NADPH-cytochrome P450 reductase and by recombinant cytosolic carbonyl reductase-1 now reveals that these compounds show a lack of specificity for these two enzymes in part. Thus, an assignment of the roles of different carbonyl reductases in metabolic keto reduction by the use of inhibitors is problematic.
View Article and Find Full Text PDFCytosolic phospholipase A2α (cPLA2α) is an important enzyme of the inflammation cascade. Therefore, inhibitors of cPLA2α are assumed to be promising drug candidates for the treatment of inflammatory disorders. Recently we have found that indole-5-carboxylic acid with a 3-(4-octylphenoxy)-2-(phenoxycarbonylamino)propyl substituent in position 1 is an inhibitor of cPLA2α.
View Article and Find Full Text PDFCytosolic phospholipase A2α (cPLA2α) plays a key role in the pathogenesis of many inflammatory diseases, such as rheumatoid arthritis, atopic dermatitis and Alzheimer's disease. Therefore, inhibition of this enzyme is assumed to provide a novel therapeutic option for the treatment of these maladies. In this study we investigated the metabolism of the potent cPLA2α inhibitors 1-[3-(4-phenoxyphenoxy)-2-oxopropyl]indole-5-carboxylic acid (1) and 3-isobutanoyl-1-[3-(4-phenoxyphenoxy)-2-oxopropyl]indole-5-carboxylic acid (2).
View Article and Find Full Text PDFInhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the principle enzymes involved in the degradation of endogenous cannabinoids like anandamide and 2-arachidonoylglycerol, have potential utility in the treatment of several disorders including pain, inflammation and anxiety. In the present study, the effectivity and selectivity of eight known FAAH and MAGL inhibitors for inhibition of the appropriate enzyme were measured applying in vitro assays, which work under comparable conditions. Because many of the known FAAH and MAGL inhibitors simply consist of a lipophilic scaffold to which a heterocyclic system is bound, furthermore, different heterocyclic structures were evaluated for their contribution to enzyme inhibition by attaching them to the same lipophilic backbone, namely 4-phenoxybenzene.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
July 2012
An on-line solid-phase extraction (SPE)-liquid chromatographic method with ultraviolet detection at 200nm for screening of inhibitors of cytosolic phospholipase A(2)α (cPLA(2)α) was developed and validated. cPLA(2)α was isolated from porcine platelets. Enzyme activity was determined by measuring the release of arachidonic acid from a phospholipid substrate using automated on-line sample clean up on a trap column followed by isocratic back-flush elution on a RP18 analytical column.
View Article and Find Full Text PDFMicrosomal prostaglandin E(2) synthase-1 (mPGES-1) is an enzyme, which is induced during the inflammatory response. Therefore, inhibitors of this enzyme are considered to be potential anti-inflammatory drugs. We have identified 3-(4-dodecanoyl-1,3,5-trimethylpyrrol-2-yl)propionic acid (12) as submicromolar inhibitor of mPGES-1.
View Article and Find Full Text PDF