Background: The intracellular ion channel type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) releases Ca2+ from the endoplasmic reticulum upon stimulation with IP3. Perturbation of IP3R1 has been implicated in the development of several neurodegenerative disorders, including Huntington disease (HD).
Objective: To elucidate the putative role of IP3R1 phosphorylation in HD, we investigated IP3R1 levels and protein phosphorylation state in the striatum, hippocampus and cerebellum of four murine HD models.
The inositol 1,4,5-trisphosphate receptor (IPR) subtype IPR1 is highly enriched in the brain, including hippocampal neurons. It plays an important function in regulating intracellular calcium concentrations. Residing on the smooth endoplasmic reticulum (sER), the IPR1 mobilizes calcium into the cytosol upon binding the intracellular signaling molecule IP, whose concentration is increased by stimulating certain metabotropic glutamate receptors.
View Article and Find Full Text PDFDietary omega-3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega-3 fatty acid deficiency on synaptic function in the hippocampus.
View Article and Find Full Text PDFPenitrem A is a fungal neurotoxin that recurrently causes intoxication in animals, and occasionally also in humans. We have previously reported that penitrem A induced the production of reactive oxygen species (ROS) in rat cerebellar granule cells, opening for a new mechanism of action for the neurotoxin. The aim of this study was to examine the potential of penitrem A to induce ROS production in isolated human neutrophil granulocytes, and to study possible mechanisms involved.
View Article and Find Full Text PDFDespite their ban several decades ago, polychlorinated biphenyls (PCBs) still pose a health threat to human beings due to their persistent and accumulative nature and continued presence in the environment. Non-dioxin-like (NDL)-PCBs have earlier been found to have effects on the immune system, including human neutrophil granulocytes. The aim of this study was to investigate the differences between ortho-chlorinated NDL-PCBs with a low or high degree of chlorination in their capability to induce the production of reactive oxygen species (ROS) in human neutrophil granulocytes in vitro.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are present as ortho- and non-ortho-substituted PCBs, with most of the ortho-substituted congeners being neurotoxic. The present study examined effects of the ortho-substituted PCB 153 on dopamine, serotonin and amino acid neurotransmitters in the neostriatum of both male and female Wistar Kyoto (WKY) and spontaneously hypertensive rat (SHR) genotypes. PCB 153 exposure at p8, p14 and p20 had no effects on levels of these transmitters when examined at p55, but led to increased levels of both homovanillic acid and 5-hydroxyindoleacetic acid, the degradation products of dopamine and serotonin, respectively, in all groups except the female SHR.
View Article and Find Full Text PDFBackground: Attention-Deficit/Hyperactivity Disorder (ADHD) is a behavioral disorder affecting 3-5% of children. Although ADHD is highly heritable, environmental factors like exposure during early development to various toxic substances like polychlorinated biphenyls (PCBs) may contribute to the prevalence. PCBs are a group of chemical industrial compounds with adverse effects on neurobiological and cognitive functioning, and may produce behavioral impairments that share significant similarities with ADHD.
View Article and Find Full Text PDFNon-dioxin-like polychlorinated biphenyls (NDL-PCBs) are neurotoxic compounds with known effects at the dopaminergic system in the brain. In a previous study we demonstrated that NDL-PCBs inhibit uptake of dopamine into rat brain synaptosomes, an effect most likely mediated by inhibition of the dopamine transporter (DAT). Here, using the cocaine analogue [(3)H]WIN-35,428 binding assay and synaptosomes, we directly investigate whether NDL-PCBs act via DAT and explore the structure-activity relationship of this effect.
View Article and Find Full Text PDFThe fungal neurotoxin penitrem A has previously been found to cause neurological disorders in animals and humans after ingestion of contaminated food and/or feed. It penetrates the blood-brain-barrier and causes cerebellar pathology in rats, including mild effects on granule neurons. The aim of the current study was to investigate the potential toxicity of penitrem A in rat cerebellar granule neurons in vitro, and to examine the involvement of the GABAA, AMPA and NMDA receptors, intracellular signalling pathways as well as the role of oxidative stress in penitrem A-induced neuronal death.
View Article and Find Full Text PDFBackground: Previous reports suggest that omega-3 (n-3) polyunsaturated fatty acids (PUFA) supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD.
Methods: We used spontaneously hypertensive rats (SHR).
Unlabelled: α(2)-adrenoceptors (AR) lower central sympathetic output and peripheral catecholamine release, thereby protecting against sympathetic hyperactivity and hypertension. Norepinephrine re-uptake-transporter effectively (NET) removes norepinephrine from the synapse. Overflow to plasma will therefore not reflect release.
View Article and Find Full Text PDFSynapsins are a family of phosphoproteins that modulate the release of neurotransmitters from synaptic vesicles. The release of insulin from pancreatic β-cells has also been suggested to be regulated by synapsins. In this study, we have utilized a knock out mouse model with general disruptions of the synapsin I and II genes [synapsin double knockout (DKO)].
View Article and Find Full Text PDFThe highly homologous nerve terminal phosphoproteins synapsin I and synapsin II have been linked to the pathogenesis of epilepsy through associations between synapsin gene mutations and epileptic disease in humans and to the observation of handling induced seizures in mice genetically depleted of one or both of these proteins. Whereas seizure behavior in mice lacking both synapsin I and synapsin II is well characterized, the seizure behavior in mice lacking either is less well studied. Through so called neuroethologically based analyses of fully established seizure behavior in Synapsin 1 and 2 knock-out mice (Syn1KO and Syn2KO mice) aged 4 1/2 months, this study reveals significant differences in the seizure behavior of the two genotypes: whereas Syn1KO mice show both partial and generalized forebrain seizure activity, Syn2KO mice show only fully generalized forebrain seizures.
View Article and Find Full Text PDFThe effects of the fungal neurotoxin penitrem A on the GABAergic and glutamatergic systems in rat brain were evaluated. Penitrem A inhibited binding of the GABA(A)-receptor ligand [³H]TBOB to rat forebrain and cerebellar membrane preparations with IC₅₀ (half maximal inhibitory concentration) values of 11 and 9 μM, respectively. Furthermore, penitrem A caused a concentration-dependent increase of [³H]flunitrazepam and [³H]muscimol binding in rat forebrain, but not in cerebellar preparations.
View Article and Find Full Text PDFDopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease, and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse.
View Article and Find Full Text PDFThe synaptic vesicle-associated synapsin proteins may participate in synaptic transmission, but their exact functional role(s) here remain(s) uncertain. We here briefly describe the important characteristics of the synapsin proteins, and review recent studies on transgenic mice devoid of the gene products encoded by the synapsin I and II genes, where both neurochemical, cell biological and electrophysiological methods have been employed. We present evidence for synapsin effects on both neurotransmitter synthesis and homeostasis, as well as on synaptic vesicle development and functions.
View Article and Find Full Text PDFThe spontaneously hypertensive rat (SHR) is widely used as a model of attention-deficit/hyperactivity disorder (ADHD). Deficits in central nicotinic receptors (nAChRs) have been previously observed in SHRs, which is interesting since epidemiological studies have identified an association between smoking and ADHD symptoms in humans. Here, we examine whether nAChR deficits in SHRs compared with Wistar Kyoto rat (WKY) controls are nAChR subtype-specific and whether these deficits correlate with changes at the level of mRNA transcription in specific brain regions.
View Article and Find Full Text PDFBackground: Polychlorinated biphenyls (PCBs) are a class of organic compounds that bioaccumulate due to their chemical stability and lipophilic properties. Humans are prenatally exposed via trans-placental transfer, through breast milk as infants, and through fish, seafood and fatty foods as adolescents and adults. Exposure has several reported effects ranging from developmental abnormalities to cognitive and motor deficiencies.
View Article and Find Full Text PDFThe spontaneously hypertensive rat (SHR/NCrl) is a validated model of attention-deficit/hyperactivity disorder (ADHD) combined subtype, whereas a recently identified substrain of the Wistar Kyoto rat (WKY/NCrl) is a model of ADHD inattentive subtype. In this study, we first examined the expression of genes involved in dopamine signaling and metabolism in the dorsal striatum and ventral mesencephalon of these two rat strains, as well as three reference control strains (WKY/NHsd, WK/HanTac, and SD/NTac) using quantitative real time RT-PCR. Next, striatal dopamine transporter (DAT) density was determined by ligand binding assay in the two ADHD-like strains at different developmental stages and after methylphenidate treatment.
View Article and Find Full Text PDFRepeated release of transmitter from presynaptic elements depends on stimulus-induced Ca(2+) influx together with recruitment and priming of synaptic vesicles from different vesicle pools. We have compared three different manipulations of synaptic strength, all of which are known to increase short-term synaptic efficacy through presynaptic mechanisms, in the glutamatergic CA3-to-CA1 stratum radiatum synapse in the mouse hippocampal slice preparation. Synaptic responses elicited from the readily releasable vesicle pool during low-frequency synaptic activation (0.
View Article and Find Full Text PDFAlthough several molecular and genetic manipulations may produce hyperactive animals, hyperactivity alone is insufficient for the animal to qualify as a model of ADHD. Based on a wider range of criteria - behavioral, genetic and neurobiological - the spontaneously hypertensive rat (SHR) obtained from Charles River, Germany (SHR/NCrl) at present constitutes the best validated animal model of ADHD combined subtype (ADHD-C), and the Wistar Kyoto substrain obtained from Harlan, UK (WKY/NHsd) is its most appropriate control. Although other rat strains may behave like WKY/NHsd rats, genetic results indicate significant differences when compared to the WKY/NHsd substrain, making them less suitable controls for the SHR/NCrl.
View Article and Find Full Text PDFThe aim of this study was to examine the importance of the vesicle-associated synapsin I and II phosphoproteins for the accumulation of neurotransmitters in central cholinergic as compared to central glutamatergic and GABAergic nerve terminals. In brain homogenate samples from mice devoid of synapsin I and II, the levels of vesicular transporters for glutamate (VGLUT1-2) and GABA (VGAT) were decreased by 35-40% in striatum and cortex, while no change was apparent for the vesicular acetylcholine transporter (VAChT). The severe decrease in the levels of amino acid vesicular transporters caused only minor changes in the concentrations of the respective neurotransmitters in homogenates of the three selected brain areas from synapsin I- and II-deficient mice.
View Article and Find Full Text PDFInactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30.
View Article and Find Full Text PDFThe synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO).
View Article and Find Full Text PDFThe relations between glutamate and GABA concentrations and synaptic vesicle density in nerve terminals were examined in an animal model with 40-50% reduction in synaptic vesicle numbers caused by inactivation of the genes encoding synapsin I and II. Concentrations and synthesis of amino acids were measured in extracts from cerebrum and a crude synaptosomal fraction by HPLC and (13)C nuclear magnetic resonance spectroscopy (NMRS), respectively. Analysis of cerebrum extracts, comprising both neurotransmitter and metabolic pools, showed decreased concentration of GABA, increased concentration of glutamine and unchanged concentration of glutamate in synapsin I and II double knockout (DKO) mice.
View Article and Find Full Text PDF