Prolonged hyperglycemia can cause diabetic retinopathy (DR), which is a major contributor to blindness. Numerous incidences of DR may be avoided if it were identified and addressed promptly. Throughout recent years, many deep learning (DL)-based algorithms have been proposed to facilitate psychometric testing.
View Article and Find Full Text PDFObjective: Diabetic retinopathy (DR) can sometimes be treated and prevented from causing irreversible vision loss if caught and treated properly. In this work, a deep learning (DL) model is employed to accurately identify all five stages of DR.
Methods: The suggested methodology presents two examples, one with and one without picture augmentation.
One of the primary causes of blindness in the diabetic population is diabetic retinopathy (DR). Many people could have their sight saved if only DR were detected and treated in time. Numerous Deep Learning (DL)-based methods have been presented to improve human analysis.
View Article and Find Full Text PDFWhen it comes to skin tumors and cancers, melanoma ranks among the most prevalent and deadly. With the advancement of deep learning and computer vision, it is now possible to quickly and accurately determine whether or not a patient has malignancy. This is significant since a prompt identification greatly decreases the likelihood of a fatal outcome.
View Article and Find Full Text PDFVision loss can be avoided if diabetic retinopathy (DR) is diagnosed and treated promptly. The main five DR stages are none, moderate, mild, proliferate, and severe. In this study, a deep learning (DL) model is presented that diagnoses all five stages of DR with more accuracy than previous methods.
View Article and Find Full Text PDFOne of the most prevalent cancers worldwide is skin cancer, and it is becoming more common as the population ages. As a general rule, the earlier skin cancer can be diagnosed, the better. As a result of the success of deep learning (DL) algorithms in other industries, there has been a substantial increase in automated diagnosis systems in healthcare.
View Article and Find Full Text PDFThe Internet of Things (IoT) refers to a system of interconnected, internet-connected devices and sensors that allows the collection and dissemination of data. The data provided by these sensors may include outliers or exhibit anomalous behavior as a result of attack activities or device failure, for example. However, the majority of existing outlier detection algorithms rely on labeled data, which is frequently hard to obtain in the IoT domain.
View Article and Find Full Text PDFAn increasing number of genetic and metabolic anomalies have been determined to lead to cancer, generally fatal. Cancerous cells may spread to any body part, where they can be life-threatening. Skin cancer is one of the most common types of cancer, and its frequency is increasing worldwide.
View Article and Find Full Text PDFThe coronavirus disease (COVID-19) is rapidly spreading around the world. Early diagnosis and isolation of COVID-19 patients has proven crucial in slowing the disease's spread. One of the best options for detecting COVID-19 reliably and easily is to use deep learning (DL) strategies.
View Article and Find Full Text PDFBreast cancer is among the leading causes of mortality for females across the planet. It is essential for the well-being of women to develop early detection and diagnosis techniques. In mammography, focus has contributed to the use of deep learning (DL) models, which have been utilized by radiologists to enhance the needed processes to overcome the shortcomings of human observers.
View Article and Find Full Text PDFAim: This study aimed to evaluate potential dose savings on a revised protocol for whole-body computed tomography and image quality after implementing Adaptive Statistical Iterative Reconstruction V (ASiR-V) algorism for trauma patients and compare it with routine protocol.
Materials And Methods: One hundred trauma patients were classified into 2 groups using 2 different scanning protocols. Group A (n = 50; age, 32.