Background: The current ribosome has evolved from the primitive stages of life on Earth. Its function is to build proteins and on the basis of this role, we are looking for a universal common ancestor to the ribosome which could: i) present optimal combinatorial properties, and ii) have left vestiges in the current molecules composing the ribosome (rRNA or r-proteins) or helping in its construction and functioning.
Methods: Genomic public databases are used for finding the nucleotide sequences of rRNAs and mRNA of r-proteins and statistical calculations are performed on the occurrence in these genes of some pentamers belonging to the RNA proposed as optimal ribosome ancestor.
Objective: The objective of this article is to develop a robust method for forecasting the transition from endemic to epidemic phases in contagious diseases using COVID-19 as a case study.
Methods: Seven indicators are proposed for detecting the endemic/epidemic transition: variation coefficient, entropy, dominant/subdominant spectral ratio, skewness, kurtosis, dispersion index and normality index. Then, principal component analysis (PCA) offers a score built from the seven proposed indicators as the first PCA component, and its forecasting performance is estimated from its ability to predict the entrance in the epidemic exponential growth phase.
Revisiting the classical model by Ross and Kermack-McKendrick, the Susceptible−Infectious−Recovered (SIR) model used to formalize the COVID-19 epidemic, requires improvements which will be the subject of this article. The heterogeneity in the age of the populations concerned leads to considering models in age groups with specific susceptibilities, which makes the prediction problem more difficult. Basically, there are three age groups of interest which are, respectively, 0−19 years, 20−64 years, and >64 years, but in this article, we only consider two (20−64 years and >64 years) age groups because the group 0−19 years is widely seen as being less infected by the virus since this age group had a low infection rate throughout the pandemic era of this study, especially the countries under consideration.
View Article and Find Full Text PDFThe dynamics of COVID-19 pandemic varies across countries and it is important for researchers to study different kind of phenomena observed at different stages of the waves during the epidemic period. Our interest in this paper is not to model what happened during the endemic state but during the epidemic state. We proposed a continuous formulation of a unique maximum reproduction number estimate with an assumption that the epidemic curve is in form of the Gaussian curve and then compare the model with the discrete form and the observed basic reproduction number during the contagiousness period considered.
View Article and Find Full Text PDFGenetic regulatory networks have evolved by complexifying their control systems with numerous effectors (inhibitors and activators). That is, for example, the case for the double inhibition by microRNAs and circular RNAs, which introduce a ubiquitous double brake control reducing in general the number of attractors of the complex genetic networks (e.g.
View Article and Find Full Text PDFPolycrystalline yttrium iron garnet (Y3Fe5O12, hereafter labeled YIG) has been synthesized by solid-state reaction, characterized by X-ray diffraction, Mössbauer spectroscopy, and UV-vis-NIR diffuse reflectance spectroscopy, and its optical properties from room temperature (RT) to 300 °C are discussed. Namely, its greenish color at RT is assigned to an O(2-) → Fe(3+) ligand-to-metal charge transfer at 2.57 eV coupled with d-d transitions peaking at 1.
View Article and Find Full Text PDFThe problem of stability in population dynamics concerns many domains of application in demography, biology, mechanics and mathematics. The problem is highly generic and independent of the population considered (human, animals, molecules,…). We give in this paper some examples of population dynamics concerning nucleic acids interacting through direct nucleic binding with small or cyclic RNAs acting on mRNAs or tRNAs as translation factors or through protein complexes expressed by genes and linked to DNA as transcription factors.
View Article and Find Full Text PDFThe classical models of epidemics dynamics by Ross and McKendrick have to be revisited in order to incorporate elements coming from the demography (fecundity, mortality and migration) both of host and vector populations and from the diffusion and mutation of infectious agents. The classical approach is indeed dealing with populations supposed to be constant during the epidemic wave, but the presently observed pandemics show duration of their spread during years imposing to take into account the host and vector population changes as well as the transient or permanent migration and diffusion of hosts (susceptible or infected), as well as vectors and infectious agents. Two examples are presented, one concerning the malaria in Mali and the other the plague at the middle-age.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2009
We present here some theoretical and numerical results about interval iterations. We consider first an application of the interval iterations theory to the problem of entrainment in respiratory physiology for which the classical point iterations theory fails. Then, after a brief review of some of the main aspects of point iterations, we explain what is meant by the term 'interval iterations'.
View Article and Find Full Text PDF