Publications by authors named "Wakamori M"

Article Synopsis
  • The study focuses on creating artificial cell models using lipid vesicles that can facilitate cell-free protein synthesis (CFPS), which is key for protein expression and gene circuits.
  • Researchers investigated how different lipid compositions (neutral, positively, negatively charged) in giant lipid vesicles affect transcription and translation processes over various incubation times.
  • Results indicated that lipid vesicles with positively charged lipids exhibited higher transcriptional and translational activities, highlighting their potential for improving artificial cell designs.
View Article and Find Full Text PDF

Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket.

View Article and Find Full Text PDF

Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation.

View Article and Find Full Text PDF

Polycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process.

View Article and Find Full Text PDF

The peripheral sensory nerve must be maintained to perceive environmental changes. Daily physiological mechanical stimulations, like gravity, floor reaction force, and occlusal force, influence the nerve homeostasis directly or indirectly. Although the direct axonal membrane stretch enhances axon outgrowth via mechanosensitive channel activation, the indirect mechanisms remain to be elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • Capecitabine plus oxaliplatin (CapeOX) is a common chemotherapy for gastric cancer that can cause severe digestive and neurological side effects after surgery, necessitating supportive care.
  • A study at Jichi Medical University evaluated how effective outpatient pharmacist interventions were for patients undergoing this treatment, measuring their impact on treatment dosage and side effects.
  • Results showed that patients with at least five pharmacist interventions experienced higher treatment doses and fewer side effects, indicating that continuous pharmacy support can improve treatment outcomes for these patients.
View Article and Find Full Text PDF

Acetylated lysine residues (Kac) in histones are recognized by epigenetic reader proteins, such as Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins. Human YEATS domains bind to the acetylated N-terminal tail of histone H3; however, their Kac-binding preferences at the level of the nucleosome are unknown. Through genetic code reprogramming, here, we established a nucleosome core particle (NCP) array containing histones that were acetylated at specific residues and used it to compare the Kac-binding preferences of human YEATS domains.

View Article and Find Full Text PDF

Myoepithelial cells (MECs) are responsible for receiving stimuli from the central nervous system and translating their responses into the form of secretion into glandular tissue, including salivary glands (SG), sweet glands, and mammary glands. SG MECs cause the secretion of serous saliva by contracting of acini/ductal cells with acetylcholine (Ach) from parasympathetic nerves via muscarinic receptors. To response the parasympathetic physiological stimulation, SG epithelial cell-derived MECs are supposed to be induced and placed adjacent to parasympathetic system nerve ends in SGs by forming a neuro-myoepithelial junction.

View Article and Find Full Text PDF

The nucleosome core particle (NCP) comprises a histone octamer, wrapped around by ∼146-bp DNA, while the nucleosome additionally contains linker DNA. We previously showed that, in the nucleosome, H4 N-tail acetylation enhances H3 N-tail acetylation by altering their mutual dynamics. Here, we have evaluated the roles of linker DNA and/or linker histone on H3 N-tail dynamics and acetylation by using the NCP and the chromatosome (i.

View Article and Find Full Text PDF

Several large-scale whole-exome sequencing studies in patients with schizophrenia (SCZ) and autism spectrum disorder (ASD) have identified rare variants with modest or strong effect size as genetic risk factors. Dysregulation of cellular calcium homeostasis might be involved in SCZ/ASD pathogenesis, and genes encoding L-type voltage-gated calcium channel (VGCC) subunits Ca1.1 (CACNA1S), Ca1.

View Article and Find Full Text PDF

The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4), wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA.

View Article and Find Full Text PDF
Article Synopsis
  • The TRPV1 channel is a cation channel found in certain neurons that responds to stimuli like capsaicin, heat (over 43°C), mechanical stress, and acidic conditions.
  • Research explored how capsaicin and protons influence the opening of the TRPV1 channel at different voltages, revealing that the channel's behavior changes under varying pH levels.
  • Findings indicate that capsaicin and protons modulate the TRPV1 channel differently, with implications for understanding pain signaling mechanisms.
View Article and Find Full Text PDF

The transient receptor potential vanilloid 1 (TRPV1) channel is a polymodal receptor in sensory nerves and involved in pain sensation. TRPV1 has at least three distinct activation modes that are selectively induced by different stimuli capsaicin, noxious heat, and protons. Although many mode-selective TRPV1 antagonists have been developed for their anticipated analgesic effects, there have been few successful reports because of adverse effects due to burn injuries and hyperthermia.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic transcription is influenced by chromatin structure and modifications like lysine acetylation in histones, which is linked to RNA polymerase activity.
  • The study successfully reconstituted a di-nucleosome with modified histone H4 to analyze transcription of a specific rRNA gene using a Xenopus oocyte extract.
  • Findings showed that tetra-acetylation of histone H4 significantly boosts the formation rate of transcriptionally active chromatin, enhancing understanding of how epigenetic changes affect transcription processes.
View Article and Find Full Text PDF

The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A-H2B heterodimers and one histone (H3-H4) tetramer, wrapped around by ∼146 bp of DNA. The N-terminal flexible histone tails stick out from the histone core and have extensive posttranslational modifications, causing epigenetic changes of chromatin. Although crystal and cryogenic electron microscopy structures of nucleosomes are available, the flexible tail structures remain elusive.

View Article and Find Full Text PDF

Activation of transient receptor potential melastatin 2 (TRPM2), an oxidative stress-sensitive Ca-permeable channel, contributes to the aggravation of cerebral ischemia-reperfusion (CIR) injury. Recent studies indicated that treatment with the antidepressant duloxetine for 24 hours (long term) attenuates TRPM2 activation in response to oxidative stress in neuronal cells. To examine the direct effects of antidepressants on TRPM2 activation, we examined their short-term (0-30 minutes) treatment effects on HO-induced TRPM2 activation in TRPM2-expressing human embryonic kidney 293 cells using the Ca indicator fura-2.

View Article and Find Full Text PDF

The bromodomain and extra-terminal domain (BET) proteins are promising drug targets for cancer and immune diseases. However, BET inhibition effects have been studied more in the context of bromodomain-containing protein 4 (BRD4) than BRD2, and the BET protein association to histone H4-hyperacetylated chromatin is not understood at the genome-wide level. Here, we report transcription start site (TSS)-resolution integrative analyses of ChIP-seq and transcriptome profiles in human non-small cell lung cancer (NSCLC) cell line H23.

View Article and Find Full Text PDF

Background And Purpose: The development of subtype-selective ligands to inhibit voltage-sensitive sodium channels (VSSCs) has been attempted with the aim of developing therapeutic compounds. Tetrodotoxin (TTX) is a toxin from pufferfish that strongly inhibits VSSCs. Many TTX analogues have been identified from marine and terrestrial sources, although their specificity for particular VSSC subtypes has not been investigated.

View Article and Find Full Text PDF

Alternative splicing (AS) that occurs at the final coding exon (exon 47) of the Cav2.1 voltage-gated calcium channel (VGCC) gene produces two major isoforms in the brain, MPI and MPc. These isoforms differ in their splice acceptor sites; human MPI is translated into a polyglutamine tract associated with spinocerebellar ataxia type 6 (SCA6), whereas MPc splices to an immediate stop codon, resulting in a shorter cytoplasmic tail.

View Article and Find Full Text PDF

Crambescin B carboxylic acid, a synthetic analog of crambescin B, was recently found to inhibit the voltage-sensitive sodium channels (VSSC) in a cell-based assay using neuroblastoma Neuro 2A cells. In the present study, whole-cell patch-clamp recordings were conducted with three heterologously expressed VSSC subtypes, Na1.2, Na1.

View Article and Find Full Text PDF

T-type voltage-gated Ca channels (T-VGCCs) function in the pathophysiology of epilepsy, pain and sleep. However, their role in cognitive function remains unclear. We previously reported that the cognitive enhancer ST101, which stimulates T-VGCCs in rat cortical slices, was a potential Alzheimer's disease therapeutic.

View Article and Find Full Text PDF

Cytosine methylation, predominantly of the CpG sequence in vertebrates, is one of the major epigenetic modifications crucially involved in the control of gene expression. Due to the difficulty of reconstituting site-specifically methylated nucleosomal DNA at crystallization quality, most structural analyses of CpG methylation have been performed using chemically synthesized oligonucleotides, There has been just one recent study of nucleosome core particles (NCPs) reconstituted with nonpalindromic human satellite 2-derived DNAs. Through the preparation of a 146-bp palindromic α-satellite-based nucleosomal DNA containing four CpG dinucleotide sequences and its enzymatic methylation and restriction, we reconstituted a 'symmetric' human CpG-methylated nucleosome core particle (NCP).

View Article and Find Full Text PDF

Lavender oil (LO) is a commonly used essential oil in aromatherapy as non-traditional medicine. With an aim to demonstrate LO effects on the body, we have recently established an animal model investigating the influence of orally administered LO in rat tissues, genome-wide. In this brief, we investigate the effect of LO ingestion in the blood of rat.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) of histones, such as lysine acetylation of the N-terminal tails, play crucial roles in controlling gene expression. Due to the difficulty in reconstituting site-specifically acetylated nucleosomes with crystallization quality, structural analyses of histone acetylation are currently performed using synthesized tail peptides. Through engineering of the genetic code, translation termination, and cell-free protein synthesis, we reconstituted human H4-mono- to tetra-acetylated nucleosome core particles (NCPs), and solved the crystal structures of the H4-K5/K8/K12/K16-tetra-acetylated NCP and unmodified NCP at 2.

View Article and Find Full Text PDF