Publications by authors named "Wakami Goda"

Aquaporin-4 (AQP4) is a dominant water channel in the brain and is expressed on astrocytic end-feet, mediating water homeostasis in the brain. AQP4 is a target of an inflammatory autoimmune disease, neuromyelitis optica spectrum disorders (NMOSD), that causes demyelination. An autoantibody recognizing the extracellular domains of AQP4, called NMO-IgG, is critically implicated in the pathogenesis of the disease.

View Article and Find Full Text PDF

Aquaporin-4 is a transmembrane water channel protein, the C-terminal domain of which is facing the cytosol. In the process of investigating the role of the C-terminal domain of aquaporin-4 with regard to intracellular trafficking, we observed that a derivative of aquaporin-4, in which the C-terminal 53 amino acids had been removed (Δ271-323), was localized to intracellular compartments, including the endoplasmic reticulum, but was not expressed on the plasma membranes. This was determined by immunofluorescence staining and labeling of the cells with monoclonal antibody specifically recognizing the extracellular domain of aquaporin-4, followed by confocal microscopy and flow cytometry.

View Article and Find Full Text PDF
Article Synopsis
  • AQP4 (Aquaporin-4) is linked to neurodegenerative diseases like Alzheimer's, potentially affecting neuroinflammation and brain fluid flow.
  • In a study with AQP4-deficient 5xFAD mice, researchers observed a significant decline in nighttime movement and increased motor dysfunction as the mice aged, particularly between 30 and 32 weeks.
  • Despite these behavioral changes and the occurrence of seizures, the levels of amyloid β deposition and neuroinflammatory markers remained unchanged, suggesting that AQP4 deficiency impacts neuronal function in a unique phase of Alzheimer's disease development.
View Article and Find Full Text PDF

Aquaporin-4, a predominant water channel in the central nervous system, has two isoforms, M1 and M23, whose transcripts are driven by distinct promoters. Using a reporter assay, we found that a fragment located between exons 0 and 1 of the mouse aquaporin-4 gene, which had been thought to be the promoter for M23, lacked enhancers functioning in astrocytes. When the astrocyte-specific enhancer (ASE) of the M1 promoter is connected to the putative M23 core promoter, it also works in astrocytes.

View Article and Find Full Text PDF

Aquaporin-4, a predominant water channel in the brain, is specifically expressed in astrocyte endfeet and plays a central role in water homeostasis, neuronal activity, and cell migration in the brain. It has two dominant isoforms called M1 and M23, whose mRNA is driven by distinct promoters located upstream of exons 0 and 1 of the aquaporin-4 gene, respectively. To identify cis-acting elements responsible for the astrocyte-specific transcription of M1 mRNA, the promoter activity of the 5'-flanking region upstream of exon 0 in primary cultured mouse astrocytes was examined by luciferase assay, and sequences, where nuclear factors bind, were identified by electrophoretic mobility shift assay.

View Article and Find Full Text PDF