Acute myocardial infarction (AMI) is associated with a decline in renal function. This study aimed to investigate the impact of engaging in moderate to vigorous intensity physical activity (MVPA) for more than 30 min per day on changes in renal function during the first 3 months after AMI onset. A prospective, observational study was conducted, enrolling 87 patients (75 men; average age, 65.
View Article and Find Full Text PDFBackground: Acute myocardial infarction (AMI) causes a decline in renal function. This study aimed to elucidate the longitudinal association between physical activity levels and changes in renal function up to 6 months after the onset of AMI.
Methods: In this dual-center prospective observational study, 73 AMI patients (67 men; average age, 65.
Background: Combined renal dysfunction worsens the subsequent prognosis in patients after acute myocardial infarction (AMI). Therefore, establishing a therapeutic modality to maintain or improve renal function in AMI patients is necessary. This study aimed to elucidate the association between physical activity level and change in renal function in such patients.
View Article and Find Full Text PDFFibroblasts, the majority of non-cardiomyocytes in the heart, are known to release several kinds of substances such as cytokines and hormones that affect cell and tissue functions. We hypothesized that undefined substance (s) derived from cardiac fibroblasts may have the potential to protect against ischemic myocardium. To assess our hypothesis, using rats, we investigated: (1) the effect of cardiac fibroblast-conditioned medium (CM) on the viability of hypoxic cardiomyocytes in vitro, (2) the effect of CM on left ventricular (LV) function in global ischemia-reperfusion in an ex vive model, (3) the mechanism underlying cardioprotection by CM.
View Article and Find Full Text PDFIrreversibly injured cardiomyocytes are positive for terminal deoxynucleotidyl transferase nick end-labeling (TUNEL), making it controversial as to whether TUNEL-positive cardiomyocytes induced by hypoxia-reoxygenation are apoptotic (secondarily necrotic) or primarily necrotic. We investigated the relationship between plasma membrane integrity and DNA fragmentation in hypoxic-reoxygenated cardiomyocytes. Cardiomyocytes were prepared from neonatal rat heart and exposed to hypoxia.
View Article and Find Full Text PDF