Neurochem Res
January 2025
Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.
View Article and Find Full Text PDFMetab Brain Dis
December 2024
Sulfite oxidase deficiencies, either caused by deficiency of the apoenzyme or the molybdenum cofactor, and ethylmalonic encephalopathy are inherited disorders that impact sulfur metabolism. These patients present with severe neurodeterioration accompanied by cerebral cortex and cerebellum abnormalities, and high thiosulfate levels in plasma and tissues, including the brain. We aimed to clarify the mechanisms of such abnormalities, so we assessed the ex vivo effects of thiosulfate administration on energetic status and oxidative stress markers in cortical and cerebellar tissues of newborn rats.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
The biochemical hallmark of D-2-hydroxyglutaric aciduria is brain accumulation of D-2-hydroxyglutaric acid (D2HG). Patients present predominantly neurological manifestations, whose pathogenesis is still unknown. Thus, we examined the impact of elevated brain levels of D2HG, induced by intracerebral injection of this metabolite in juvenile rats, on redox and mitochondrial homeostasis and histochemical landmarks in the cerebral cortex.
View Article and Find Full Text PDFPropionic and methylmalonic acidemias (PAcidemia and MMAcidemia, respectively) are genetic disorders characterized by acute metabolic decompensation and neurological complications. L-carnitine (LC) is effective in reducing toxic metabolites that are related to the pathophysiology of these diseases. Therefore we investigated biomarkers of inflammation (cytokines and C-reactive protein (CRP)), neurodegeneration (BDNF, NCAM-1 and cathepsin-D) and biomolecules oxidation (sulfhydryl content and thiobarbituric acid-reactive species (TBARS)), as well as carnitine concentrations in untreated patients with PAcidemia and MMAcidemia, in patients under treatment with LC and a protein-restricted diet for until 2 years and in patients under the same treatment for more than 2 years.
View Article and Find Full Text PDFNeurochem Int
December 2024
Patients with glutaric acidemia type I (GA I) manifest motor and intellectual disabilities whose pathogenesis has been so far poorly explored. Therefore, we evaluated neuromotor and cognitive abilities, as well as histopathological and immunohistochemical features in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase (GCDH) deficient knockout mice (Gcdh), a well-recognized model of GA I. The effects of a single intracerebroventricular glutaric acid (GA) injection in one-day-old pups on the same neurobehavioral and histopathological/immunohistochemical endpoints were also investigated.
View Article and Find Full Text PDFCell Biochem Funct
December 2024
Tyrosinemia type 1 (TT1) is caused by fumarylacetoacetate hydrolase activity deficiency, resulting in tissue accumulation of upstream metabolites, including succinylacetone (SA), the pathognomonic compound of this disease. Since the pathogenesis of liver and kidney damage observed in the TT1-affected patients is practically unknown, this study assessed the effects of SA on important biomarkers of redox homeostasis in the liver and kidney of adolescent rats, as well as in hepatic (HepG2) and renal (HEK-293) cultured cells. SA significantly increased nitrate and nitrite levels and decreased the concentrations of reduced glutathione (GSH) in the liver and kidney, indicating induction of reactive nitrogen species (RNS) generation and disruption of antioxidant defenses.
View Article and Find Full Text PDFBiomedicines
July 2024
3-Hydroxy-3-methylglutaric acidemia (HMGA) is a neurometabolic inherited disorder characterized by the predominant accumulation of 3-hydroxy-3-methylglutaric acid (HMG) in the brain and biological fluids of patients. Symptoms often appear in the first year of life and include mainly neurological manifestations. The neuropathophysiology is not fully elucidated, so we investigated the effects of intracerebroventricular administration of HMG on redox and bioenergetic homeostasis in the cerebral cortex and striatum of neonatal rats.
View Article and Find Full Text PDFThe white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination.
View Article and Find Full Text PDFNonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a lysosomal storage disease caused by mutations in the gene encoding the enzyme iduronate 2-sulfatase (IDS) and biochemically characterized by the accumulation of glycosaminoglycans (GAGs) in different tissues. It is a multisystemic disorder that presents liver abnormalities, the pathophysiology of which is not yet established. In the present study, we evaluated bioenergetics, redox homeostasis, and mitochondrial dynamics in the liver of 6-month-old MPS II mice (IDS).
View Article and Find Full Text PDFMol Neurobiol
May 2024
Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2023
Aminoacylase 1 (ACY1) deficiency is an inherited metabolic disorder biochemically characterized by high urinary concentrations of aliphatic N-acetylated amino acids and associated with a broad clinical spectrum with predominant neurological signs. Considering that the pathogenesis of ACY1 is practically unknown and the brain is highly dependent on energy production, the in vitro effects of N-acetylglutamate (NAG) and N-acetylmethionine (NAM), major metabolites accumulating in ACY1 deficiency, on the enzyme activities of the citric acid cycle (CAC), of the respiratory chain complexes and glutamate dehydrogenase (GDH), as well as on ATP synthesis were evaluated in brain mitochondrial preparations of developing rats. NAG mildly inhibited mitochondrial isocitrate dehydrogenase 2 (IDH2) activity, moderately inhibited the activities of isocitrate dehydrogenase 3 (IDH3) and complex II-III of the respiratory chain and markedly suppressed the activities of complex IV and GDH.
View Article and Find Full Text PDFPhenylketonuria (PKU) is the most common inherited metabolic disorders caused by severe deficiency or absence of phenylalanine hydroxylase activity that converts phenylalanine (Phe) to tyrosine. PKU patients were treated with a Phe restricted diet supplemented with a special formula containing l-carnitine (L-car), well-known antioxidant compound. The lack of treatment can cause neurological and cognitive impairment, as severe mental retardation, neuronal cell loss and synaptic density reduction.
View Article and Find Full Text PDFNeurochem Int
December 2023
Aminoacylase 1 (ACY1) deficiency is a rare genetic disorder that affects the breakdown of short-chain aliphatic N-acetylated amino acids, leading to the accumulation of these amino acid derivatives in the urine of patients. Some of the affected individuals have presented with heterogeneous neurological symptoms such as psychomotor delay, seizures, and intellectual disability. Considering that the pathological mechanisms of brain damage in this disorder remain mostly unknown, here we investigated whether major metabolites accumulating in ACY1 deficiency, namely N-acetylglutamate (NAG) and N-acetylmethionine (NAM), could be toxic to the brain by examining their in vitro effects on important mitochondrial properties.
View Article and Find Full Text PDFCell Biochem Biophys
December 2023
Ethylmalonic encephalopathy (EE) is a severe inherited metabolic disorder that causes tissue accumulation of hydrogen sulfide (sulfide) and thiosulfate in patients. Although symptoms are predominantly neurological, chronic hemorrhagic diarrhea associated with intestinal mucosa abnormalities is also commonly observed. Considering that the pathophysiology of intestinal alterations in EE is virtually unknown and that sulfide and thiosulfate are highly reactive molecules, the effects of these metabolites were investigated on bioenergetic production and transfer in the intestine of rats.
View Article and Find Full Text PDFNon ketotic hyperglycinemia (NKH) is an inborn error of glycine metabolism caused by mutations in the genes encoding glycine cleavage system proteins. Classic NKH has a neonatal onset, and patients present with severe neurodegeneration. Although glycine accumulation has been implicated in NKH pathophysiology, the exact mechanisms underlying the neurological damage and white matter alterations remain unclear.
View Article and Find Full Text PDFCell Biochem Funct
June 2023
Phenylketonuria (PKU) was the first genetic disease to have an effective therapy, which consists of phenylalanine intake restriction. However, there are patients who do not adhere to treatment and/or are not submitted to neonatal screening. PKU patients present L-carnitine (L-car) deficiency, compound that has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases.
View Article and Find Full Text PDFToxicol Lett
May 2023
Cell Mol Neurobiol
August 2023
Isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies are genetic diseases biochemically characterized by the toxic accumulation of sulfite in the tissues of patients, including the brain. Neurological dysfunction and brain abnormalities are commonly observed soon after birth, and some patients also have neuropathological alterations in the prenatal period (in utero). Thus, we investigated the effects of sulfite on redox and mitochondrial homeostasis, as well as signaling proteins in the cerebral cortex of rat pups.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
April 2023
Urea cycle disorders (UCD) are inborn errors of metabolism that occur due to a loss of function in enzymes and transporters involved in the urea cycle, causing an intoxication by hyperammonemia and accumulation of metabolites. Patients can develop hepatic encephalopathy (HE), severe neurological and motor disabilities, and often death. The mechanisms involved in the pathophysiology of UCD are many and complex, but there are strong indications that oxidative stress and inflammation are present, being responsible for at least part of the cellular damage that occurs in these diseases.
View Article and Find Full Text PDFNeurotox Res
April 2023
L-2-Hydroxyglutaric aciduria (L-2-HGA) is an inherited neurometabolic disorder caused by deficient activity of L-2-hydroxyglutarate dehydrogenase. L-2-Hydroxyglutaric acid (L-2-HG) accumulation in the brain and biological fluids is the biochemical hallmark of this disease. Patients present exclusively neurological symptoms and brain abnormalities, particularly in the cerebral cortex, basal ganglia, and cerebellum.
View Article and Find Full Text PDFAccumulation of D-2-hydroxyglutaric acid (D-2-HG) is the biochemical hallmark of D-2-hydroxyglutaric aciduria type I and, particularly, of D-2-hydroxyglutaric aciduria type II (D2HGA2). D2HGA2 is a metabolic inherited disease caused by gain-of-function mutations in the gene isocitrate dehydrogenase 2. It is clinically characterized by neurological abnormalities and a severe cardiomyopathy whose pathogenesis is still poorly established.
View Article and Find Full Text PDFNeuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response.
View Article and Find Full Text PDF