In this work, the structure of two kaolin sludges and a waste activated sludge are investigated using both light-scattering and free-settling methods. Fractal dimensions estimated by the light-scattering and free-settling techniques (D(S) and D(F) respectively) differ significantly and support the hypothesis that naturally occurring aggregates possess a multilevel structure. A two-level floc structural model comprised of (i) a primary floc (of fractal dimension D(S)) consisting of primary particles and (ii) a secondary floc (of fractal dimension D(F)) consisting of the microflocs is proposed to interpret the experimental findings.
View Article and Find Full Text PDFDespite efforts to enclose and control conservation zones around the world, direct human impacts in conservation areas continue, often resulting from clandestine violations of conservation rules through outright poaching, strategic agricultural encroachment, or noncompliance. Nevertheless, next to nothing is actually known about the spatially and temporally explicit patterns of anthropogenic disturbance resulting from such noncompliance. This article reviews current understandings of ecological disturbance and conservation noncompliance, concluding that differing forms of noncompliance hold differing implications for diversity.
View Article and Find Full Text PDFEnviron Sci Technol
September 2005
Hematite (10 mg of Fe/L) floc-humic acid assemblages have been formed at pH 4 either by first aggregating hematite particles with salt (100 mM KCl) and then adding humic acid (salt-particle-organic or SPO assemblages) or by suspending the hematite particles in humic acid solutions and then adding salt to induce aggregation (organic-particle-salt or OPS assemblages). The behavior of these assemblages upon deposition on microfiltration (MF) membranes has then been investigated. In the OPS case, the fractal dimension (dF) of the assemblages formed varied dramatically depending upon the extent of charge neutralization by added fulvic acid with dF values typical of diffusion-limited cluster aggregates at low (0.
View Article and Find Full Text PDFThe sonolysis of 4-chlorophenol (4-CP) in O2-saturated aqueous solutions is investigated for a variety of operating conditions with the loss of 4-CP from solution following pseudo-first-order reaction kinetics. Hydroquinone (HQ) and 4-chlorocatechol (4-CC) are the predominant intermediates which are degraded on extended ultrasonic irradiation. The final products are identified as Cl-, CO2, CO, and HCO2H.
View Article and Find Full Text PDFThe increased use of Fenton systems for the treatment of contaminated waters and wastewaters necessitates the development of kinetic models capable of accurately simulating key species concentrations in order to optimize system performance and efficiency. In this work a reaction mechanism in which the hydroxyl radical is nominated to be the active oxidant in Fenton systems is used to describe the oxidation of formic acid (HCOOH) under a variety of experimental conditions. A kinetic model based on this reaction mechanism is shown to adequately describe results of experiments in which starting concentrations of H202 and HCOOH varied over 1 and 4 orders of magnitude, respectively, under both air-saturated and deaerated conditions.
View Article and Find Full Text PDFReduction of iron from the ferric state to the ferrous state is one strategy employed by microorganisms in nearneutral environments to increase its biological availability. In recent years, the existence of mobile reducing agents produced bymicroorganismsto promote iron reduction, known as electron shuttles, has been demonstrated. Production of electron shuttles has been shown for several organisms, employing a variety of mostly organic molecules as the electron carrier.
View Article and Find Full Text PDFEnviron Sci Technol
April 2005
Superoxide (and potentially its conjugate acid hydroperoxyl) is unique among the reactive oxygen species in that its standard redox potential in circumneutral natural waters potentially allows it to reduce ferric iron to the more soluble ferrous state. Here we have observed the superoxide/ hydroperoxyl-mediated reduction of ferric complexes with a variety of synthetic organic ligands and several complexes with natural organic matter (NOM), as well as freshly precipitated amorphous ferric oxyhydroxide, in bicarbonate buffered solutions at pH 8.1.
View Article and Find Full Text PDFEnviron Sci Technol
March 2005
Addition of nanoparticulate zero-valent iron (nZVI) to oxygen-containing water results in oxidation of organic compounds. To assess the potential application of nZVI for oxidative transformation of organic contaminants, the conversion of benzoic acid (BA) to p-hydroxybenzoic acid (p-HBA) was used as a probe reaction. When nZVI was added to BA-containing water, an initial pulse of p-HBA was detected during the first 30 min, followed by the slow generation of additional p-HBA over periods of at least 24 h.
View Article and Find Full Text PDFDegradation of the carbothiolate herbicide, molinate, has been investigated in oxic solutions containing nanoscale zero-valent iron particles and found to be effectively degraded by an oxidative pathway. Both ferrous iron and superoxide (or, at pH < 4.8, hydroperoxy) radicals appearto be generated on corrosion of the zero-valent iron with resultant production of strongly oxidizing entities capable of degrading the trace contaminant.
View Article and Find Full Text PDFEnviron Sci Technol
November 2003
We have investigated the kinetics of Fe(II) oxygenation in seawater in the presence of a variety of natural organic materials obtained from vegetation near Moreton Bay, Queensland. Natural organic matter (NOM) was observed mostly to accelerate Fe(II) oxygenation, but in some cases oxidation was retarded. We fitted a previously developed kinetic model to the experimental data to determine the critical rate constants, kf for the formation of Fe(II)--NOM complexes and kox for the oxygenation of the Fe(II)--NOM complexes, when assumed to be first order with respect to both the concentration of Fe(II) and the dissolved O2.
View Article and Find Full Text PDFIncreasing attention is being placed on capping as a relatively new option in managing both contaminated sediments and dredged materials, due to its economic and environmental benefits. Capping denotes the placement of a cover onto potentially hazardous sediments or dredged material dumps to inhibit the transfer of contaminants into the water column. Retention of divalent iron and manganese cations using sandy capping layers containing natural zeolites as a reactive additive (active barrier systems, ABS) is evaluated in this study.
View Article and Find Full Text PDFEnviron Sci Technol
September 2003
We have investigated the kinetics of iron hydrolysis and precipitation and dissolution of the solid formed via a novel chemical method, namely accessibility of iron to the fungal siderophore desferrioxamine B (DFB), with spectrophotometric detection of the ferrioxamine complex. Our results support a mechanism in which precipitation of dissolved inorganic iron in seawater is first order with respect to total (dissolved and precipitated) iron, with a second-order rate constant of (4.1 +/- 1.
View Article and Find Full Text PDFWater Sci Technol
November 2003
Both size and structure of wastewater solids (biosolids) have been hypothesised to have an impact on the dewaterability of these solids yet very little data exists to validate this hypothesis or to elucidate the relative effects of size and structure. We have recently undertaken studies in which the size and structure of activated sludge flocs were altered in a controlled manner and the dewaterability of resultant flocs examined using the well established capillary suction time (CST) test. A small angle light scattering method was applied for the determination of activated sludge floc size and structure.
View Article and Find Full Text PDFResults of studies reported here show that adsorption could result in considerable accumulation of hormones on hydrophobic hollow fiber membrane surfaces during filtration of trace-hormone-containing feed solutions with a linear adsorption isotherm applicable over the majority of the estrone concentration range examined (2.6-154 ng/L). Models based on both diffusion and surface reaction limitation were used to describe the kinetics of estrone adsorption to the membranes tested.
View Article and Find Full Text PDFWater Sci Technol
October 2003
The degradations of phenol in air-equilibrated aqueous media were investigated using coupled sonochemistry and Fenton's reagent for a variety of operating conditions. The decomposition yields of phenol (100-500 microM) were substantially enhanced due to the addition of Fenton's reagent (FeSO4 into the solutions irradiated at 608 kHz with 30 W and with reaction temperature 25 +/- 1 degree C. The decomposition process follows a pseudo-first-order reaction kinetics with respect to phenol concentration, and the rate constant of phenol disappearance observed increases by approximately 2-3 fold when FeSO4 was between 400 and 1000 M at pH = 3.
View Article and Find Full Text PDFEnviron Sci Technol
February 2003
A kinetic model has been developed to investigate the relative importance of major pathways for the photocatalytic degradation of trace levels of the cyanobacterial toxin microcystin-LR (MLR) in solutions containing a complex suite of dissolved organic matter and to test the sensitivity of MLR degradation to rate constants of the key processes. The kinetic model incorporates adsorption of the trace contaminant, other organics and oxygen on the particle surface, surface reactions between adsorbed radical and nonradical species, desorption of surface radical species, solution phase radical reactions, and radical termination pathways. Under conditions where the contaminant adsorbs strongly to semiconductor surface sites, rapid degradation is observed, and a primary degradation step appears to involve reaction between surface-located long-lived organic radicals (formed from hydroxyl radical scavenging by the bulk organic) and adsorbed trace contaminant.
View Article and Find Full Text PDFEnviron Sci Technol
January 2003
The ability of a variety of nanofiltration and reverse osmosis membranes to retain the natural hormone estrone are examined here as a function of solution conditions. While size exclusion dominates retention with the tighter membranes, both size exclusion and adsorptive effects appear to be instrumental in maintaining high retention on nanofiltration membranes that otherwise exhibit relatively low ion retentions. These adsorptive effects may be driven by hydrogen bonding between estrone and the membrane.
View Article and Find Full Text PDFUnder the assumption that selection favors minimization of costly errors, erroneous choice may be common when its fitness cost is low. According to an adaptive-choice model, this cost depends on the rate at which an animal encounters the choice: the higher this rate, the smaller the cost of choosing a less valuable option. Errors should thus be more common when interruptions to foraging are shorter.
View Article and Find Full Text PDFUltrasonic decompositions of chlorobenzene (ClBz), 1,4-dichlorobenzene and 1-chloronaphthalene were investigated at 500 kHz in order to gain insight into the kinetics and mechanisms of the decomposition process. The disappearance of ClBz on sonication is almost simultaneously accompanied by the release of chloride ions as a result of the rapid cleavage of carbon-chlorine bonds with a concomitant release of CO, C2H2, CH4 and CO2. The intermediates resulting from attack of HO.
View Article and Find Full Text PDFWater Sci Technol
February 2003
Adsorption of the trace contaminant estrone, a natural hormone and commonly abundant in surface waters and in treated as well as untreated wastewaters, to eight commercial nanofiltration and reverse osmosis membranes was investigated under well defined conditions. Experiments were conducted in stainless steel stirred cells by spiking trace levels (100 ng x L(-1)) of estrone into five different matrices, namely MilliQ water, a bicarbonate solution, synthetic natural waters containing natural organics, and secondary effluent. Results show that estrone is adsorbed to the membranes to varying degrees with extent of adsorption influenced by the feedwater composition with different mechanisms of association controlling adsorption to different membrane types.
View Article and Find Full Text PDFThe sonolysis of 4-nitrophenol (4-NP) and aniline in O2-saturated aqueous solutions was performed at 610 kHz with ultrasonic power of 25 W and aqueous temperature of 15 +/- 1 degrees C. The initial rate of degradation of both 4-NP and aniline in sonolysis of aqueous media follows pseudo-first-order reaction kinetics. Investigation of the H2O2 generation rate in phosphate buffer media (0.
View Article and Find Full Text PDFA continuous photo-Fenton process has been used for the degradation of gaseous dichloromethane (DCM). By absorbing gaseous DCM into a reactive Fenton mixture, the scrubbing and degradation processes could be completed in the one reactor. Operating with a Dark Fenton solution did not result in removal of DCM any better than simply using MilliQ water.
View Article and Find Full Text PDFComparison of two commonly used techniques for molecular weight determination of natural organics, ultrafiltration (UF) fractionation and high-performance size exclusion chromatography (SEC), shows that neither technique gives absolute measures of molecular weight. Investigations of International Humic Substances Society standard humic and fulvic acids as well as natural organic matter concentrated from surface freshwaters show that charge effects and solution conditions are important in both SEC and UF fractionation with various components of the natural organics being affected differently. Membranes with a smaller molecular weight cutoff (MWCO) produce permeates with a lower UV/DOC ratio, suggesting that the more aromatic components of natural organics are removed by the lower molecular weight cutoff membranes.
View Article and Find Full Text PDFEnviron Sci Technol
February 2002
A detailed kinetic model has been developed to describe the oxidation of Fe(II) in seawater in both the absence and the presence of natural organic material. Experimental data were collected using a luminol chemiluminescence-based method to measure Fe(II), assuming that both the inorganic and the organically complexed species were detected. In the absence of organic matter, the data were modeled based on the Haber-Weiss mechanism with the inclusion of a back-reaction of Fe(III) with superoxide and precipitation of Fe(OH)3.
View Article and Find Full Text PDFWater Sci Technol
April 2002
Investigation of the specific resistance to filtration of biosolids modified by cationic polymer addition reveals a dependence on both size and structure of the resulting biosolids flocs. This dependence is reasonably described by a modified form of the Carman-Kozeny equation and reveals that effects of differences in floc structure on cake resistance are most marked for flocs of small size. Conversely, effects of differences in floc size are most significant when flocs are more compact.
View Article and Find Full Text PDF