Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change.
View Article and Find Full Text PDFDespite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium-Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time.
View Article and Find Full Text PDFMaterials (Basel)
January 2021
A recent research emphasis has been placed on the development of highly crystallized nanostructures as a useful technology for many photocatalytic applications. With the unique construction of semiconductor transition metal oxide nanostructures in the form of nanopillars-artificially designed pillar-shaped structures grouped together in lattice-type arrays-the surface area for photocatalytic potential is increased and further enhanced through the introduction of dopants. This short review summarizes the work on improving the efficiency of photocatalyst nanopillars through increased surface area and doping within the applications of water splitting, removal of organic pollutants from the environment, photoswitching, soot oxidation, and photothermalization.
View Article and Find Full Text PDFInsecticide-treated bed nets reduce malaria transmission by limiting contact between mosquito vectors and human hosts when mosquitoes feed during the night. However, malaria vectors can also feed in the early evening and in the morning when people are not protected. Here, we explored how the timing of blood feeding interacts with environmental temperature to influence the capacity of Anopheles mosquitoes to transmit the human malaria parasite Plasmodium falciparum.
View Article and Find Full Text PDFThe rate of malaria transmission is strongly determined by parasite development time in the mosquito, known as the extrinsic incubation period (EIP), since the quicker parasites develop, the greater the chance that the vector will survive long enough for the parasite to complete development and be transmitted. EIP is known to be temperature-dependent but this relationship is surprisingly poorly characterized. There is a single degree-day model for EIP of Plasmodium falciparum that derives from a limited number of poorly controlled studies conducted almost a century ago.
View Article and Find Full Text PDFLong-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have contributed substantially to reductions in the burden of malaria in the past 15 years. Building on this foundation, the goal is now to drive malaria towards elimination. Vector control remains central to this goal, but there are limitations to what is achievable with the current tools.
View Article and Find Full Text PDFCountries in the Asia Pacific region aim to eliminate malaria by 2030. A cornerstone of malaria elimination is the effective management of Anopheles mosquito vectors. Current control tools such as insecticide treated nets or indoor residual sprays target mosquitoes in human dwellings.
View Article and Find Full Text PDFBackground: Novel interventions for malaria control are necessary in the face of problems such as increasing insecticide resistance and residual malaria transmission. One way to assess performance prior to deployment in the field is through mathematical modelling. Modelled here are a range of potential outcomes for eave tubes, a novel mosquito control tool combining house screening and targeted use of insecticides to provide both physical protection and turn the house into a lethal mosquito killing device.
View Article and Find Full Text PDFBackground: Control of mosquitoes requires the ability to evaluate new insecticides and to monitor resistance to existing insecticides. Monitoring tools should be flexible and low cost so that they can be deployed in remote, resource poor areas. Ideally, a bioassay should be able to simulate transient contact between mosquitoes and insecticides, and it should allow for excito-repellency and avoidance behaviour in mosquitoes.
View Article and Find Full Text PDFTransmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread.
View Article and Find Full Text PDFBackground: Blood-feeding arthropods can harm their hosts in many ways, such as through direct tissue damage and anemia, but also by distracting hosts from foraging or watching for predators. Blood-borne pathogens transmitted by arthropods can further harm the host. Thus, effective behavioral and immunological defenses against blood-feeding arthropods may provide important fitness advantages to hosts if they reduce bites, and in systems involving pathogen transmission, if they lower pathogen transmission rate.
View Article and Find Full Text PDFIn principle, the solution to stopping the spread of any vectorborne pathogen is a simple one - just stop infected vectors from biting new hosts and the pathogen cannot spread. Importantly, this does not necessarily require killing all vectors, or protecting all hosts. Transmission only occurs when an infected vector moves to a new host, and so knowing how vectors move between hosts in nature and how they choose hosts is crucial to understanding transmission.
View Article and Find Full Text PDFMany parasites, such as those that cause malaria, depend on an insect vector for transmission between vertebrate hosts. Theory predicts that parasites should have little or no effect on the transmission ability of vectors, e.g.
View Article and Find Full Text PDFBirds combat ectoparasites with many defences but the first line of defence is grooming behaviour, which includes preening with the bill and scratching with the feet. Preening has been shown to be very effective against ectoparasites. However, most tests have been with feather lice, which are relatively slow moving.
View Article and Find Full Text PDFResults of electrophoretic surveys have suggested that hemoglobin polymorphism may be maintained by balancing selection in natural populations of house mice, Mus musculus. Here we report a survey of nucleotide variation in the adult globin genes of house mice from South America. We surveyed nucleotide polymorphism in two closely linked alpha-globin paralogs and two closely linked beta-globin paralogs to test whether patterns of variation are consistent with a model of long-term balancing selection.
View Article and Find Full Text PDF