Publications by authors named "Waichman S"

Differential signaling of the type I interferon receptor (IFNAR) has been correlated with the ability of its subunit, IFNAR1, to differentially recognize a large spectrum of different ligands, which involves intricate conformational re-arrangements of multiple interacting domains. To shed light onto the structural determinants governing ligand recognition, we compared the force-induced unfolding of the IFNAR1 ectodomain when bound to interferon and when free, using the atomic force microscope and steered molecular dynamics simulations. Unexpectedly, we find that IFNAR1 is easier to mechanically unfold when bound to interferon than when free.

View Article and Find Full Text PDF

We present a synthetic strategy that takes advantage of the inherent asymmetry exhibited by semiconductor nanowires prepared by Au-catalyzed chemical vapor deposition (CVD). The metal-semiconductor junction is used for activating etch, deposition, and modification steps localized to the tip area using a wet-chemistry approach. The hybrid nanostructures obtained for the coinage metals Cu, Ag, and Au resemble the morphology of grass flowers, termed here Nanofloret hybrid nanostructures consisting of a high aspect ratio SiGe nanowire (NW) with a metallic nanoshell cap.

View Article and Find Full Text PDF

Interactions of proteins in the plasma membrane are notoriously challenging to study under physiological conditions. We report in this paper a generic approach for spatial organization of plasma membrane proteins into micropatterns as a tool for visualizing and quantifying interactions with extracellular, intracellular, and transmembrane proteins in live cells. Based on a protein-repellent poly(ethylene glycol) polymer brush, micropatterned surface functionalization with the HaloTag ligand for capturing HaloTag fusion proteins and RGD peptides promoting cell adhesion was devised.

View Article and Find Full Text PDF

Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures(1). MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms.

View Article and Find Full Text PDF

Micropatterned polymer-supported membranes (PSM) are established as a tool for confining the diffusion of transmembrane proteins for single molecule studies. To this end, a photochemical surface modification with hydrophobic tethers on a PEG polymer brush is implemented for capturing of lipid vesicles and subsequent fusion. Formation of contiguous membranes within micropatterns is confirmed by scanning force microscopy, fluorescence recovery after photobleaching (FRAP), and super-resolved single-molecule tracking and localization microscopy.

View Article and Find Full Text PDF

We have established a robust and versatile analytical platform for probing membrane protein function in a defined lipid environment on solid supports. This approach is based on vesicle capturing onto an ultrathin poly(ethylene glycol) (PEG) polymer brush functionalized with fatty acid moieties and subsequent vesicle fusion into a contiguous membrane. In order to ensure efficient formation of these tethered polymer-supported membranes (PSM), very small unilamellar vesicles (VSUV) containing fluorescent lipids or model transmembrane proteins were generated by detergent depletion with cyclodextrin.

View Article and Find Full Text PDF

Spatial organization of proteins into microscopic structures has important applications in fundamental and applied research. Preserving the function of proteins in such microstructures requires generic methods for site-specific capturing through affinity handles. Here, we present a versatile bottom-up surface micropatterning approach based on surface functionalization with maleimides, which selectively react with organic thiols.

View Article and Find Full Text PDF

Self-standing tubular-like structures of nano-crystalline SnO2 with controlled diameter and length (200 nm x 10 microm) have been synthesized by sol-gel process in combination with a hard template. Different textures can be easily achieved-from hollow tubes to quasi-solid rods-by simply tuning the initial concentration of the precursor oxide gel and the dipping time of the template. Moreover, these self-supported SnO2 structures have been turned into 3D nanostructured electrodes directly fabricated on copper substrates.

View Article and Find Full Text PDF

Functional immobilization and lateral organization of proteins into micro- and nanopatterns is an important prerequisite for miniaturizing bioanalytical and biotechnological devices. Here, we report an approach for efficient site-specific protein immobilization based on enzymatic phosphopantetheinyl transfer (PPT) from coenzyme A (CoA)-functionalized glass-type surfaces to specific peptide tags. We devised a bottom-up surface modification approach for coupling CoA densely to a molecular poly(ethylene glycol) polymer brush.

View Article and Find Full Text PDF