Biochar has been recognised as an efficacious amendment for the remediation of compound heavy metal contamination in soil. However, the molecular mechanism of biochar-mediated tolerance to compound heavy metal toxicity in cotton is unknown. The objective of this research was to investigate the positive impact of biochar (10 g·kg) on reducing damage caused by compound heavy metals (Cd, Pb, and As) in cotton (Gossypium hirsutum L.
View Article and Find Full Text PDFThe lack of understanding of heavy metal speciation and solubility control mechanisms in smelting soils limits the effective pollution control. In this study smelting soils were investigated by an advanced mineralogical analysis (AMICS), leaching tests and thermodynamic modelling. The aims were to identify the partitioning and release behaviour of Pb, Zn, Cd and As.
View Article and Find Full Text PDFIn the current study, a typical Sb mine was selected to explore the microbial community composition and assembly driven by the cocontamination of As/Sb with geographic distance. Our results showed that environmental parameters, especially pH, TOC, nitrate, total and bioavailable As/Sb contents largely affected the microbial community diversity and composition. The total and bioavailable As/Sb levels were significantly positively correlated with the relative abundance of Zavarzinella, Thermosporothrix and Holophaga, while the pH presented a significant negative correlation with the three genera, potentially implying they are important taxonomic groups in acid-mining soils.
View Article and Find Full Text PDFExtracellular polymeric substances (EPS) are an important medium for communication and material exchange between iron-oxidizing bacteria and the external environment and could induce the iron (oxyhydr) oxides production which reduced arsenic (As) availability. The main component of EPS secreted by iron-oxidizing bacteria (Ochrobactrum EEELCW01) was composed of polysaccharides (150.76-165.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2023
Arsenic (As) in groundwater and its accumulation in agricultural produces has caused serious threats to human health. The majority of current research on As mainly focuses on the technical aspects while bypassing the social perspectives. Farmers are the prime stakeholders as well as executors of agricultural strategies, and their adaptation largely depends on how they perceive the risk for which a mitigation strategy is proposed.
View Article and Find Full Text PDFLight has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.
View Article and Find Full Text PDFSmelting activities pose serious environmental problems due to the local and regional heavy metal pollution in soils they cause. It is therefore important to understand the pollution situation and its source in the contaminated soils. In this paper, data on heavy metal pollution in soils resulting from Pb/Zn smelting (published in the last 10 years) in China was summarized.
View Article and Find Full Text PDFArsenic (As) biotransformation in soil affects As biogeochemical cycling and is associated with As accumulation in rice. After inoculation with 1% iron-oxidizing bacteria (FeOB) in paddy soil, As speciation, As biotransformation genes in soil, As/Fe in Fe plaques, and As accumulation in rice were characterized. Compared with the control, the available As concentrations in soils decreased while amorphous and poorly crystalline Fe-Al oxidized As and crystalline Fe-Al oxidized As fractions increased of F (FeOB) and RF (rice and FeOB) treatments.
View Article and Find Full Text PDFIron-oxidizing bacteria (FeOB) could oxidize Fe(II) and mediate biomineralization, which provides the possibility for its potential application in arsenic (As) remediation. In the present study, a strain named isolated previously, was inoculated into paddy soils to investigate the effect of FeOB inoculation on the As migration and transformation in paddy soils. The results showed that inoculation of sp.
View Article and Find Full Text PDFIron-oxidizing strain (FeOB) and iron modified biochars have been shown arsenic (As) remediation ability in the environment. However, due to the complicated soil environment, few field experiment has been conducted. The study was conducted to investigate the potential of iron modified biochar (BC-FeOS) and biomineralization by a new found FeOB to remediate As-contaminated paddy field.
View Article and Find Full Text PDFMicrobe induced iron (Fe) reduction play an important role in arsenic (As) transformation and the related secondary mineral formation. Meanwhile biochar could react as electron shuttle for this process. Impact of biochar and model electron shuttle anthraquinone-2,6-disulfonate (AQDS) on the chemical/biological iron reduction of As(III)-adsorbed ferrihydrite and the solid-liquid redistribution of As in M1 buffer were studied.
View Article and Find Full Text PDFRhus chinensis Mill. (RCM) is the host plant of Galla chinensis, which is valued in traditional medicine. Environmental temperature directly determines the probability of gallnut formation and RCM growth.
View Article and Find Full Text PDFThis paper reports on the long-term effectiveness of a non-formal co-curricular educational program based on a campus ecogarden at a Hong Kong university in developing pro-sustainability awareness, attitudes and behavior among undergraduate students. This service-based, nature-based experiential learning program, termed the Ecogarden Farmer and Biodiversity Surveyor, has been running at the university since 2015. The program is divided into two consecutive phases: a training phase comprising various learning activities and a successive internship phase consisting of the all-round practical tasks involved in managing the garden.
View Article and Find Full Text PDFThe microbe-driven iron cycle plays an important role in speciation transformation and migration of arsenic (As) in soil-rice systems. In this study, pot experiments were used to investigate the effect of bacterial iron (Fe) reduction processes in soils on As speciation and migration, as well as on As uptake in soil-rice system. During the rice growth period, pH and electrical conductivity (EC) in soil solutions initially increased and then decreased, with the ranges of 7.
View Article and Find Full Text PDFCadmium (Cd) contamination in paddy soils has aroused global concern. Sulfur modified biochar (BC) could combine the benefits of BC and S for Cd remediation. However, no information is available on the impact of sulfur modified biochar on Cd phytoavailability in paddy soils.
View Article and Find Full Text PDFCadmium contamination in paddy soils has aroused increasing concern around the world, and biochar has many positive properties, such as large specific surface areas, micro porous structure for the heavy metal immobilization in soils. However there are few studies on sulfur-iron modified biochar as well as its microbiology effects. The purpose of this study was to evaluate the Cd immobilization effects of sulfur or sulfur-iron modified biochar and its related microbial community changes in Cd-contaminated soils.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2018
Arsenic contamination in paddy soils has aroused global concern due to its threats to food security and human health. Biochar modified with different iron materials was prepared for arsenic (As) immobilization in contaminated soils. Soil incubation experiments were carried to investigate the effects of biochar modified with Fe-oxyhydroxy sulfate (Biochar-FeOS), FeCl (Biochar-FeCl), and zero-valent iron (Biochar-Fe) on the pH, NaHCO-extractable As concentrations, and the As fractions in soils.
View Article and Find Full Text PDF