Publications by authors named "Wai-Nang P Lee"

Introduction: Childhood obesity remains high in prevalence. Sugar-sweetened beverages containing high fructose corn syrup (HFCS) are a common source of excess calories among children and adolescents. Fructose metabolism differs from glucose metabolism, which may also differ from fructose + glucose metabolism in HFCS consumption.

View Article and Find Full Text PDF

We previously showed that testosterone (T) deficiency enhanced high-fat/low-carbohydrate diet (HFD)-induced hepatic steatosis in rats independent of insulin resistance and that T replacement reduced hepatic macrovesicular fat accumulation and inflammation. The present report explores the mechanism of T's protective effects on HFD-induced steatohepatitis. Adult male rats were randomized into four treatment groups for 15 wk: intact rats on regular chow diet or HFD, and castrated rats on HFD with or without T replacement.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) with rapid catch-up growth leads to adult obesity and insulin resistance. We have previously shown that IUGR male rats demonstrated increased de novo fatty acid synthesis in the subcutaneous (SC) fat, but not the visceral fat, during the nursing period prior to the onset of obesity. Young IUGR females do not exhibit the same increase.

View Article and Find Full Text PDF

Stearoyl-CoA desaturase enzyme 1 (SCD1) is a lipogenic enzyme that is upregulated in obesity, insulin resistance, and cancer. Since glucose is a substrate for both de novo fatty acid synthesis and deoxyribose synthesis, we hypothesized that SCD1 affects these multiple synthetic pathways through changes in glucose utilization. This study determined glucose utilization for fatty acid synthesis and cell proliferation in 3T3-L1 preadipocytes during SCD1 inhibition.

View Article and Find Full Text PDF

Oxythiamine (OT), an analogue of anti-metabolite, can suppress the nonoxidative synthesis of ribose and induce cell apoptosis by causing a G1 phase arrest in vitro and in vivo. However, the molecular mechanism remains unclear yet. In the present study, a quantitative proteomic analysis using the modified SILAC method (mSILAC) was performed to determine the effect of metabolic inhibition on dynamic changes of protein expression in MIA PaCa-2 cancer cells treated with OT at various doses (0 μM, 5 μM, 50 μM and 500 μM) and time points (0 h, 12 h and 48 h).

View Article and Find Full Text PDF

Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G(1) phase. Aberrant expression of CDK4 and CDK6 is a hallmark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM (the calcein acetoxymethyl-ester) is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G(1) phase.

View Article and Find Full Text PDF

It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain.

View Article and Find Full Text PDF

Background: Small for gestational age (SGA) leads to increased risk of adult obesity and metabolic syndrome. Offspring exposed to 50% maternal food restriction in utero are born smaller than Controls (FR), catch-up in growth by the end of the nursing period, and become obese adults. The objective of the study was to determine stearoyl-CoA desaturase activity (SCD1) and rates of de novo fatty acid synthesis in young FR and Control offspring tissues at the end of the nursing period, as possible contributors to catch-up growth.

View Article and Find Full Text PDF

The metabolic network of cancer cells confers adaptive mechanisms against many chemotherapeutic agents, but also presents critical constraints that make the cells vulnerable to perturbation of the network due to drug therapy. To identify these fragilities, combination therapies based on targeting the nucleic acid synthesis metabolic network at multiple points were tested. Results showed that cancer cells overcome single hit strategies through different metabolic network adaptations, demonstrating the robustness of cancer cell metabolism.

View Article and Find Full Text PDF

In the post-genomic era, a pressing challenge to biological scientists is to understand the organization of gene functions, the interaction between gene and nutrient environment, and the genesis of phenotypes. Metabolomics, the quantitation of low molecular weight compounds, has been used to provide a phenotypic description of a cell or tissue by a set of metabolites. Gene function is hypothesized from its correlation with the corresponding set of macromolecules by transcriptomics or proteomics.

View Article and Find Full Text PDF

Understanding nutrient-gene interaction requires tools for both the study of nutrigenomics and the characterization of phenotype. Metabolomics or metabolite profiling is a powerful tool for characterizing metabolic phenotype, and tracer-based metabolomics is a subset of metabolomics that focuses on metabolite distribution and flux determination using tracers. In this review, the characterizations of metabolic phenotype by metabolite profiling and by metabolic flux measurements are compared.

View Article and Find Full Text PDF

Among K-ras mutations, codon 12 mutations have been identified as those conferring a more aggressive phenotype. This aggressiveness is primarily associated with slow proliferation but greatly increased resistance to apoptosis. Using transfected NIH3T3 fibroblasts with a mutated K-ras minigene either at codon 12 (K12) or at codon 13 (K13), and taking advantage of [1,2-13C2]glucose tracer labeling, we show that codon 12 mutant K-ras (K12)-transformed cells exhibit greatly increased glycolysis with only a slight increase in activity along pathways that produce nucleic acid and lipid synthesis precursors in the oxidative branch of the pentose phosphate pathway and via pyruvate dehydrogenase flux.

View Article and Find Full Text PDF